- renamed Cascade Lake AVX512_CEL => AVX512_CLX (align with Intel SDE tool)
- fixed CLX instruction sets (no IFMA/VBMI)
- added flag to bypass CPU baseline check: OPENCV_SKIP_CPU_BASELINE_CHECK
[GSoC 2019] Improve the performance of JavaScript version of OpenCV (OpenCV.js)
* [GSoC 2019]
Improve the performance of JavaScript version of OpenCV (OpenCV.js):
1. Create the base of OpenCV.js performance test:
This perf test is based on benchmark.js(https://benchmarkjs.com). And first add `cvtColor`, `Resize`, `Threshold` into it.
2. Optimize the OpenCV.js performance by WASM threads:
This optimization is based on Web Worker API and SharedArrayBuffer, so it can be only used in browser.
3. Optimize the OpenCV.js performance by WASM SIMD:
Add WASM SIMD backend for OpenCV Universal Intrinsics. It's experimental as WASM SIMD is still in development.
* [GSoC2019]
1. use short license header
2. fix documentation node issue
3. remove the unused `hasSIMD128()` api
* [GSoC2019]
1. fix emscripten define
2. use fallback function for f16
* [GSoC2019]
Fix rebase issue
* Added MSA implementations for mips platforms. Intrinsics for MSA and build scripts for MIPS platforms are added.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* Removed some unused code in mips.toolchain.cmake.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* Added comments for mips toolchain configuration and disabled compiling warnings for libpng.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* Fixed the build error of unsupported opcode 'pause' when mips isa_rev is less than 2.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* 1. Removed FP16 related item in MSA option defines in OpenCVCompilerOptimizations.cmake.
2. Use CV_CPU_COMPILE_MSA instead of __mips_msa for MSA feature check in cv_cpu_dispatch.h.
3. Removed hasSIMD128() in intrin_msa.hpp.
4. Define CPU_MSA as 150.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* 1. Removed unnecessary CV_SIMD128_64F guarding in intrin_msa.hpp.
2. Removed unnecessary CV_MSA related code block in dotProd_8u().
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* 1. Defined CPU_MSA_FLAGS_ON as "-mmsa".
2. Removed CV_SIMD128_64F guardings in intrin_msa.hpp.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
* Removed unused msa_mlal_u16() and msa_mlal_s16 from msa_macros.h.
Signed-off-by: Fei Wu <fwu@wavecomp.com>
ISA 2.07 (aka POWER8) effectively extended the expanding multiply
operation to word types. The altivec intrinsics prior to gcc 8 did
not get the update.
Workaround this deficiency similar to other fixes.
This was exposed by commit 33fb253a66
which leverages the int -> dword expanding multiply.
This fixes Issue #15506
Use 4x FMA chains to sum on SIMD 128 FP64 targets. On
x86 this showed about 1.4x improvement.
For PPC, do a full multiply (32x32->64b), convert to DP
then accumulate. This may be slightly less precise for
some inputs. But is 1.5x faster than the above which
is about 1.5x than the FMA above for ~2.5x speedup.
Implement cvRound using inline asm. No compiler support
exists today to properly optimize this. This results in
about a 4x speedup over the default rounding. Likewise,
simplify the growing number of rounding function overloads.
For P9 enabled targets, utilize the classification
testing instruction to test for Inf/Nan values. Operation
speedup is about 1.2x for FP32, and 1.5x for FP64 operands.
For P8 targets, fallback to the GCC nan inline. It provides
a 1.1/1.4x improvement for FP32/FP64 arguments.
Add a new macro definition OPENCV_USE_FASTMATH_GCC_BUILTINS to enable
usage of GCC inline math functions, if available and requested by the
user.
Likewise, enable it for POWER. This is nearly always a substantial
improvement over using integer manipulation as most operations can
be done in several instructions with no branching. The result is a
1.5-1.8x speedup in the ceil/floor operations.
1. As tested with AT 12.0-1 (GCC 8.3.1) compiler on P9 LE.
Due to the explicitly declared copy constructor Vec<T, n>::Vec(Vec <T,n>&)
GCC 9 warns if there is no assignment operator, as having one typically
requires the other (rule-of-three, constructor/desctructor/assginment).
As the values are just a plain array the default assignment operator does
the right thing. Tell the compiler explicitly to default it.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
* core: improve AVX512 infrastructure by adding more CPU features groups
* cmake: use groups for AVX512 optimization flags
* core: remove gap in CPU flags enumeration
* cmake: restore default CPU_DISPATCH
- added functionality to collect memory usage of OpenCL sybsystem
- memory usage of fastMalloc() (disabled by default):
* It is not accurate sometimes - external memory profiler is required.
- specify common `CV_TEST_TAG_` macros
- added applyTestTag() function
- write memory usage / enabled tags into Google Tests output file (.xml)
- allow cmake to check sanity of vsx aligned ld/st
- force universal intrinsics v_load_aligned/v_store_aligned
to failback to unaligned ld/st if cmake runtime vsx aligned test fail
Lab/XYZ modes have been postponed (color_lab.cpp):
- need to split code for tables initialization and for pixels processing first
- no significant performance improvements for switching between SSE42 / AVX2 code generation
Resize reworked using wide universal intrinsics (#13781)
* Added wide universal intrinsics optimized implementation for 3 channel bit-exact linear resize
* Reworked linear resize using new wide LUT intrinsics
* Fix for VSX intrinsics
Due to size limit of shared memory, histogram is built on
the global memory for CV_16UC1 case.
The amount of memory needed for building histogram is:
65536 * 4byte = 256KB
and shared memory limit is 48KB typically.
Added test cases for CV_16UC1 and various clip limits.
Added perf tests for CV_16UC1 on both CPU and CUDA code.
There was also a bug in CV_8UC1 case when redistributing
"residual" clipped pixels. Adding the test case where clip
limit is 5.0 exposes this bug.
* Add Operator override for multi-channel Mat with literal constant.
* simple test
* Operator overloading channel constraint for primitive types
* fix some test for #13586
* added performance test for compareHist
* compareHist reworked to use wide universal intrinsics
* Disabled vectorization for CV_COMP_CORREL and CV_COMP_BHATTACHARYYA if f64 is unsupported
* Added performance tests for hal::norm functions
* Added sum of absolute differences intrinsic
* norm implementation updated to use wide universal intrinsics
* improve and fix v_reduce_sad on VSX
- add infrastructure support for Power9/VSX3
- fix missing VSX flags on GCC4.9 and CLANG4(#13210, #13222)
- fix disable VSX optimzation on GCC by using flag ENABLE_VSX
- flag ENABLE_VSX is deprecated now, use CPU_BASELINE, CPU_DISPATCH instead
- add VSX3 to arithmetic dispatchable flags
* Updated boxFilter implementations to use wide universal intrinsics
* boxFilter implementation moved to separate file
* Replaced ROUNDUP macro with roundUp() function
- initialize arithmetic dispatcher
- add new universal intrinsic v_absdiffs
- add new universal intrinsic v_pack_b
- add accumulate version of universal intrinsic v_round
- fix sse/avx2:uint8 multiplication overflow
- reimplement arithmetic, logic and comparison operations into wide universal intrinsics
with full support for all types
- reimplement IPP arithmetic, logic and comparison operations in a sperate file arithm_ipp.hpp
- avoid scalar multiplication if scaling factor eq 1 and use integer multiplication
- move C arithmetic operations to precomp.hpp and delete [arithm_simd|arithm_core].hpp
- add compatibility with new opencv4 divide policy
* js: update build script
- support emscipten 1.38.12 (wasm is ON by default)
- verbose build messages
* js: use builtin Math functions
* js: disable tracing code completelly
Fixes for instrumentation of IPP and OCL (#12637)
* fixed warning about re-declaring variable when both IPP and instrumentation are enabled
* fixed segfault when no funName provided
* compilation fixed when both OCL and instrumentation are enabled
* Remove isIntel check from deep learning layers
* Remove fp16->fp32 fallbacks where it's not necessary
* Fix Kernel::run to prevent localsize > globalsize
* may be an typo fix
* remove identical branch,may be paste error
* add parentheses around macro parameter
* simplify if condition
* check malloc fail
* change the condition of branch removed by commit 3041502861
* rewrote Mat::convertTo() and convertScaleAbs() to wide universal intrinsics; added always-available and SIMD-optimized FP16<=>FP32 conversion
* fixed compile warnings
* fix some more compile errors
* slightly relaxed accuracy threshold for int->float conversion (since we now do it using single-precision arithmetics, not double-precision)
* fixed compile errors on iOS, Android and in the baseline C++ version (intrin_cpp.hpp)
* trying to fix ARM-neon builds
* trying to fix ARM-neon builds
* trying to fix ARM-neon builds
* trying to fix ARM-neon builds
* trying to fix the custom AVX2 builder test failures (false alarms)
* fixed compile error with CPU_BASELINE=AVX2 on x86; raised tolerance thresholds in a couple of tests
* fixed compile error with CPU_BASELINE=AVX2 on x86; raised tolerance thresholds in a couple of tests
* fixed compile error with CPU_BASELINE=AVX2 on x86; raised tolerance thresholds in a couple of tests
* seemingly disabled false alarm warning in surf.cpp; increased tolerance thresholds in the tests for SolvePnP and in DNN/ENet
Intrinsics must be effective, so don't declare FP16 type/operations if there is no native support.
- CV_FP16: supports load/store into/from float32
- CV_SIMD_FP16: declares FP16 types and native FP16 operations
for some big negative values less than -INT_MAX+32767 the sign of the numbers is lost due to overflow that leads to
incorrect saturation to MAX value, instead of zero.
The issue is not reproduced with CV_ENABLED_INTRINSICS=OFF
* 1. changed static const __m128/256 to const __m128/256 to avoid wierd instructions and calls inserted by compiler.
2. added universal intrinsics that wrap MOVNTPS and other such (non-temporary or "no cache" store) instructions. v_store_interleave() and v_store() got respective flags/overloaded variants
3. rewrote split & merge to use the "no cache" store instructions. It resulted in dramatic performance improvement when processing big arrays
* hopefully, fixed some test failures where 4-channel v_store_interleave() is used
* added missing implementation of the new universal intrinsics (v_store_aligned_nocache() etc.)
* fixed silly typo in the new intrinsics in intrin_vsx.hpp
* still trying to fix VSX compiler errors
* still trying to fix VSX compiler errors
* still trying to fix VSX compiler errors
* still trying to fix VSX compiler errors
* fixed/updated v_load_deinterleave and v_store_interleave intrinsics; modified split() and merge() functions to use those intrinsics
* fixed a few compile errors and bug in v_load_deinterleave(ptr, v_uint32x4& a, v_uint32x4& b)
* fixed few more compile errors
* core:OE-27 prepare universal intrinsics to expand (#11022)
* core:OE-27 prepare universal intrinsics to expand (#11022)
* core: Add universal intrinsics for AVX2
* updated implementation of wide univ. intrinsics; converted several OpenCV HAL functions: sqrt, invsqrt, magnitude, phase, exp to the wide universal intrinsics.
* converted log to universal intrinsics; cleaned up the code a bit; added v_lut_deinterleave intrinsics.
* core: Add universal intrinsics for AVX2
* fixed multiple compile errors
* fixed many more compile errors and hopefully some test failures
* fixed some more compile errors
* temporarily disabled IPP to debug exp & log; hopefully fixed Doxygen complains
* fixed some more compile errors
* fixed v_store(short*, v_float16&) signatures
* trying to fix the test failures on Linux
* fixed some issues found by alalek
* restored IPP optimization after the patch with AVX wide intrinsics has been properly tested
* restored IPP optimization after the patch with AVX wide intrinsics has been properly tested
- 'if' logic is moved into templates.
- removed unnecessary cv::Mat objects creation.
- fixed inv() test (invA * A == eye)
- added more Matx tests to cover all defined template specializations
fixes handling of empty matrices in some functions (#11634)
* a part of PR #11416 by Yuki Takehara
* moved the empty mat check in Mat::copyTo()
* fixed some test failures
* make sure that the matrix with more than INT_MAX elements is marked as non-continuous, and thus all the pixel-wise functions process it correctly (i.e. row-by-row, not as a single row, where integer overflow may occur when computing the total number of elements)
* Issue 11242 intrinsics v_extract, v_rotate improvement, branch 3.4, without C++11 (remove type restrictions for SSE2, use PALIGNR on SSSE3, compile to no-op when imm is 0 or nlanes).
* fix whitespace
* Fix#11242 (NEON intrinsics v_rotate...) branch 3.4
Separate macro expansion OPENCV_HAL_IMPL_NEON_SHIFT_OP for bitwise shifts for integers, from macro expansion OPENCV_HAL_IMPL_NEON_ROTATE for lane rotations. Bitwise shifts do not apply to floats, but lane-rotations can apply to both.
* fix whitespace
* Fix#11242 compile error (VSX intrinsics v_rotate(a)) branch 3.4 no-c++11
* Fix CV_Asserts with negation of strings
{!"string"} causes some compilers to throw a warning.
The value of the string is not that important -- it's only for printing
the assertion message.
Replace these calls with:
CV_Error(Error::StsError, "string")
to suppress the warning.
* remove unnecessary 'break' after CV_Error()