Feature barcode detector parameters #24903
Attempt to solve #24902 without changing the default detector behaviour.
Megre with extra: https://github.com/opencv/opencv_extra/pull/1150
**Introduces new parameters and methods to `cv::barcode::BarcodeDetector`**.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
imgproc: C-API cleanup, drawContours refactor #25564
Changes:
* moved several macros from types_c.h to cvdef.h (assuming we will continue using them)
* removed some cases of C-API usage in _imgproc_ module (`CV_TERMCRIT_*` and `CV_CMP_*`)
* refactored `drawContours` to use C++ API instead of calling `cvDrawContours` + test for filled contours with holes (case with non-filled contours is simpler and is covered in some other tests)
#### Note:
There is one case where old drawContours behavior doesn't match the new one - when `contourIdx == -1` (means "draw all contours") and `maxLevel == 0` (means draw only selected contours, but not what is inside).
From the docs:
> **contourIdx** Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
> **maxLevel** Maximal level for drawn contours. If it is 0, only the specified contour is drawn. If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account when there is hierarchy available.
Old behavior - only one first contour is drawn:
![actual_screenshot_08 05 2024](https://github.com/opencv/opencv/assets/3304494/d0ae1d64-ddad-46bb-8acc-6f696874f71b)
a
New behavior (also expected by the test) - all contours are drawn:
![expected_screenshot_08 05 2024](https://github.com/opencv/opencv/assets/3304494/57ccd980-9dde-4006-90ee-19d6ce76912a)
Current net exporter `dump` and `dumpToFile` exports the network structure (and its params) to a .dot file which works with `graphviz`. This is hard to use and not friendly to new user. What's worse, the produced picture is not looking pretty.
dnn: better net exporter that works with netron #25582
This PR introduces new exporter `dumpToPbtxt` and uses this new exporter by default with environment variable `OPENCV_DNN_NETWORK_DUMP`. It mimics the string output of a onnx model but modified with dnn-specific changes, see below for an example.
![image](https://github.com/opencv/opencv/assets/17219438/0644bed1-da71-4019-8466-88390698e4df)
## Usage
Call `cv::dnn::Net::dumpToPbtxt`:
```cpp
TEST(DumpNet, dumpToPbtxt) {
std::string path = "/path/to/model.onnx";
auto net = readNet(path);
Mat input(std::vector<int>{1, 3, 640, 480}, CV_32F);
net.setInput(input);
net.dumpToPbtxt("yunet.pbtxt");
}
```
Set `export OPENCV_DNN_NETWORK_DUMP=1`
```cpp
TEST(DumpNet, env) {
std::string path = "/path/to/model.onnx";
auto net = readNet(path);
Mat input(std::vector<int>{1, 3, 640, 480}, CV_32F);
net.setInput(input);
net.forward();
}
```
---
Note:
- `pbtxt` is registered as one of the ONNX model suffix in netron. So you can see `module: ai.onnx` and such in the model.
- We can get the string output of an ONNX model with the following script
```python
import onnx
net = onnx.load("/path/to/model.onnx")
net_str = str(net)
file = open("/path/to/model.pbtxt", "w")
file.write(net_str)
file.close()
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Check range for type-dependant function tables #25598
Address https://github.com/opencv/opencv/issues/24703
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Disabled conversion to float of model's input #25555
In dnn 4.x usually any model's input is converted to float32 or float16 (except quantized models). Also mean and scale can be applied. In current dnn 5.x there is the same conversion except int32 and int64 types. I removed this conversion.
Here is how the pipeline works now:
- if input Mat type is float32, the pipeline applies mean and scale and may convert it to float16.
- if input Mat type is not float32, the pipeline preserves the input type and doesn't apply mean and scale
There was a conflict in protobuf parser between ONNX importer and tests. In ONNX importer any uint8 weight was handled as quantized weight and x = int8(x_uint8 - 128) conversion was used inside the protobuf parser. ONNX conformance tests used the same protobuf reader, so tests with uint8 inputs couldn't read the input values properly. I've made this conversion optional.
These ONNX conformance tests are enabled:
- test_add_uint8
- test_div_uint8
- test_mul_uint8
- test_sub_uint8
- test_max_int8
- test_max_uint8
- test_min_int8
- test_min_uint8
- test_mod_mixed_sign_int8
- test_mod_uint8
These tests were removed:
- Test_two_inputs.basic (when input is uint8)
- setInput.normalization (when input is uint8)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Support Transpose op in TFlite #25297
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1168
The purpose of this PR is to introduce support for the Transpose op in TFlite format and to add a shape comparison between the output tensors and the references. In some occasional cases, the shape of the output tensor is `[1,4,1,1]`, while the shape of the reference tensor is `[1,4]`. Consequently, the norm check incorrectly reports that the test has passed, as the residual is zero.
Below is a Python script for generating testing data. The generated data can be integrated into the repo `opencv_extra`.
```python
import numpy as np
import tensorflow as tf
PREFIX_TFL = '/path/to/opencv_extra/testdata/dnn/tflite/'
def generator(input_tensor, model, saved_name):
# convert keras model to .tflite format
converter = tf.lite.TFLiteConverter.from_keras_model(model)
#converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.optimizations = [None]
tflite_model = converter.convert()
with open(f'{PREFIX_TFL}/{saved_name}.tflite', 'wb') as f:
f.write(tflite_model)
# save the input tensor to .npy
if input_tensor.ndim == 4:
opencv_tensor = np.transpose(input_tensor, (0,3,1,2))
else:
opencv_tensor = input_tensor
opencv_tensor = np.copy(opencv_tensor, order='C').astype(np.float32)
np.save(f'{PREFIX_TFL}/{saved_name}_inp.npy', opencv_tensor)
# generate output tenosr and save it to .npy
mat_out = model(input_tensor).numpy()
mat_out = np.copy(mat_out, order='C').astype(np.float32)
if mat_out.ndim == 4:
mat_out = np.transpose(mat_out, (0,3,1,2))
interpreter = tf.lite.Interpreter(model_content=tflite_model)
out_name = interpreter.get_output_details()[0]['name']
np.save(f'{PREFIX_TFL}/{saved_name}_out_{out_name}.npy', mat_out)
def build_transpose():
model_name = "keras_permute"
mat_in = np.array([[[1,2,3], [4,5,6]]], dtype=np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.Input(shape=(2,3)))
model.add(tf.keras.layers.Permute((2,1)))
model.summary()
generator(mat_in, model, model_name)
if __name__ == '__main__':
build_transpose()
```
### Pull Request Readiness Checklist
- [x] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Remove dnn::layer::allocate in doc #25591
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #25589
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Added int support for OpenVINO dnn backend #25458
Modified dnn OpenVINO integration to support type inference and int operations.
Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers.
I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests.
OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO.
OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled:
- Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU)
- Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU)
- Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU)
- Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU)
Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches:
- Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU
- Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU
- Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU
- Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU
- Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
highgui: wayland: expand image width if title bar cannot be shown
Close#25560
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Additional fixes to 0/1D tests #25487
This has additional fixes requited for 0/1D tests.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
1/0D test padding layer #25390
This PR introduces 0/1D test for `padding` layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
0/1D test for tile layer #25409
This PR introduces `0/1D` test for `Tile` layer. It also add fuctionality to support `0/1D` cases.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixed OpenVINO gemm layer #25518
Fixed OpenVINO gemm layer
The problem was that our layer didn't properly handle all the possible gemm options in OpenVINO mode
Fixes#25472
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
0/1D Einsum Layer Test #25567
This PR introduces 0/1D test cases for Einsum layer.
TODO:
- Add support for 0D tensors to Einsum layer
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
highgui: wayland: fix to pass highgui test #25551Close#25550
- optimize Mat to XRGB8888 conversion with OpenCV functions
- extend to support CV_8S/16U/16S/32F/64F
- extend to support 1/4 channels
- fix to update value timing
- initilize slider_ value if value is not nullptr.
- Update user-ptr value and call on_change() function if cv_wl_trackbar::draw() is not called.
- Update usage of WAYLAND/XDG macro to avoid reference undefined macro.
- Update documents
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Merge pull request #25565 from savuor/rv/hal_eq_hist
HAL for equalizeHist() added #25565fixes#25530
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Transform offset to indeces for MatND in minMaxIdx HAL #25563
Address comments in https://github.com/opencv/opencv/pull/25553
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Merge pull request #25554 from savuor:rv/hal_lut
HAL for LUT added #25554
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Change opencv_face_detector related tests and samples from caffe to onnx #25463
Part of https://github.com/opencv/opencv/issues/25314
This PR aims to change the tests related to opencv_face_detector from caffe framework to onnx. Tests in `test_int8_layer.cpp` and `test_caffe_importer.cpp` will be removed in https://github.com/opencv/opencv/pull/25323
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
core: add universal intrinsics for fp16 #25196
Partially resolves the section "Universal intrinsics evolution in OpenCV 5.0" in https://github.com/opencv/opencv/issues/25019.
Universal intrinsics for bf16 will be added in a subsequent pull request.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix HAL interface for hal_ni_minMaxIdx #25553
Fixes https://github.com/opencv/opencv/issues/25540
The original implementation call HAL with the same parameters independently from amount of channels. The patch uses HAL correctly for the case cn > 1.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Remove goturn caffe model #25503
**Merged with:** https://github.com/opencv/opencv_extra/pull/1174
**Merged with:** https://github.com/opencv/opencv_contrib/pull/3729
Part of https://github.com/opencv/opencv/issues/25314
This PR aims to remove goturn tracking model because Caffe importer will be remove in 5.0
The GOTURN model will take **388 MB** of traffic for each download if converted to onnx. If the user wants to use the tracking method, we can recommend they use Vit or dasimRPN.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
HAL added for Otsu threshold #25509fixes#25393
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
videoio: obsensor: remove OB_EXT_CMD10 to suppress warning #25523Close#25522
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
It is said "see above" because calcBackProject is listed under calcHist function in source file, while it is listed before due to the lexicographic ordering.
highgui: wayland: show "NO" status if dependency is missing #25496Close#25495
- [doc] Add document to enable Wayland highgui-backend in ubuntu 24.04.
- [build] Show "NO" status instead of version if dependency library is missing.
- [build] Fix to find Wayland EGL.
- [fix] Add some callback stub functions to suppress build warning.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
HAL for Hamming norm added #25491fixes#25474
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix broken js build after moving HaarCascades to contrib #25324
The HaarCascades related are not completely cleaned up #25311 after #25198, which breaks the JavaScript build. The PR is to fix the issue.
Related PR: opencv/opencv_contrib#3712
Perf tests for SVD and solve() created #25450fixes#25336
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixed ONNX Range layer to support any input type #25492
Fixed ONNX Range layer to support any input type
Extra PR: https://github.com/opencv/opencv_extra/pull/1173Fixes#25363
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix documentation for findEssentialMat to reflect how it actually works. #25488
Documentation for findEssentialMat() incorrectly states that the method uses the same cameraMatrix for both lists of points even though there are two cameraMatrix and distCoeffs.
Checked the code and it does the right thing i.e. uses cameraMatrix1, distCoeffs1 for points1 and cameraMatrix2, distCoeffs2 for points2.
Updated the documentation for the method to clarify what it does. The code itself is not changed.
G-API OV backend requires cv::MediaFrame #24938
### Pull Request Readiness Checklist
**Background_subtraction demo G-API issue. Update:**
Porting to API20 resulted in an error (both for CPU and NPU):
```
[ERROR] OpenCV(4.9.0-dev) /home/runner/work/open_model_zoo/open_model_zoo/cache/opencv/modules/gapi/src/backends/ov/govbackend.cpp:813: error: (-215: assertion not done ) cv::util::holds_alternative<cv::GMatDesc>(input_meta) in function 'cfgPreProcessing'
```
Adding cv::MediaFrame support to govbackend resulted in the following (tested with CPU):
<img width="941" alt="image" src="https://github.com/opencv/opencv/assets/52502732/3a003d61-bda7-4b1e-9117-3410cda1ba32">
### TODO
- [ ] **As part of the review process [this comment](https://github.com/opencv/opencv/pull/24938#discussion_r1487694043) was addressed which make it impossible to run the demo. I will bring those changes back in a separate PR [support `PartialShape`]**
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
imgproc: refactor EMD to reduce C-API usage #25469
- added more tests for EMD
- refactored to remove CvArr
- used BufferArea for memory allocations
- renamed functions and variables and formatted the code
- kept legacy functions intact in separate header
Add logs of test failure to test_onnx_conformance_layer_filter_opencv_all_denylist.inl.hpp #25480
### Pull Request Readiness Checklist
This PR add logs to test failures to `test_onnx_conformance_layer_filter_opencv_all_denylist.inl.hpp` and it continuation of #25442
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
0/1D test for BatchNorm layer #25420
This PR introduces support for 0/1D inputs in `BatchNorm` layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Comments for parser denylist #25465
Relates to https://github.com/opencv/opencv/issues/21078
This PR is designed to figure out why the test in `test_onnx_conformance_layer_parser_denylist.inl.hpp` fails. Currently, conformance tests do not pass for the following reasons:
1. BOOL, INT(8, 16) types are not supported **(MAJOR)**
2. Some layers can not be created due to various reasons **(MAJOR)**
3. Shape mismatches while creating layers **(MAJOR)**
4. Some layers are expected to support dynamic parameter initialization **(MAJOR)**
5. Some layers are expected to receive weight as inputs (no idea why that is needed) **(MAJOR)**
6. Other unknown reasons
**(MAJOR)** - These are the most frequently encountered reasons for test failure.
The style of comments is not consistent everywhere. Let's keep this PR without merging, just for our reference.
A couple of tests are commented on since they have passed on the MacOS platform.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
CI pipeline with Windows 10 ARM64 for 5.x #25428
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Calibrate hand eye datatype fix#25423
Fix for issue https://github.com/opencv/opencv/issues/25421.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add cv::currentUIFramework #25354
issue https://github.com/opencv/opencv/issues/25329
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Remove unnecessary FIXIT section in grfmt_tiff.cpp #25447
No int64/uint64 is used in the code anymore.
grfmt_tiff.hpp includes the tiff.h header inside of the tiff_dummy_namespace declaration. One implication of this is that all namespaced declarations made in tiff.h become qualified with tiff_dummy_namespace::.
Because tiff.h includes standard library headers, the std namespace declarations are converted to tiff_dummy_namespace::std declarations.
Subsequently, grfmt_tiff.hpp declares using namespace tiff_dummy_namespace;.
This can lead to an ambiguity error during the resolution of the std namespace.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
Conformance test denylist reduce #25442
Comment out all passing tests in `test_onnx_conformance_layer_filter_opencv_all_denylist.inl.hpp` file.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix race condition in InternalFFMpegRegister initialization. #25419
initLogger_ does not check if the logger has been initizalized before and it might initialize it several times from different threads, racing with other threads that are logging.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
Handle top and left border masked pixels correctly in inpaint method #25402Fixes#25389
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fixed ONNX range layer #25414
Partially address https://github.com/opencv/opencv/issues/25363
Fixed ONNX range layer. It should support any input type.
Added tests (extra [PR](https://github.com/opencv/opencv_extra/pull/1170))
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Move Charuco/Calib tutorials and samples to main repo #25378
Merge with https://github.com/opencv/opencv_contrib/pull/3708
Move Charuco/Calib tutorials and samples to main repo:
- [x] update/fix charuco_detection.markdown and samples
- [x] update/fix charuco_diamond_detection.markdown and samples
- [x] update/fix aruco_calibration.markdown and samples
- [x] update/fix aruco_faq.markdown
- [x] move tutorials, samples and tests to main repo
- [x] remove old tutorials, samples and tests from contrib
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix mesh loading for texture coordinates and face indices #25382
### This PR changes
* Texture coordinates were stored incorrectly (3-channel array is read as if there were 2 channels), fixed
* Faces were pushed back to the output array instead of indexed writing which produced a lot of empty faces, fixed
* A set of ground truth tests were added to cover these issues
* `std::vector<cv::Mat>` support added for `saveMesh()` which is required for Python bindings
* More command line args were added to rasterization test data generator
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Geometry C++ sample combining other shape detection samples #25304
Clean Samples #25006
This PR removes adds a new cpp sample (geometry) which combines different methods of finding and drawing shapes in an image. It makes separate samples for convexHull, fitellipse, minAreaRect, minAreaCircle redudant. Shapes can be changed using hotkeys after running the program
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fully connected 0D test. #25208
This PR introduces parametrized `0/1D` input support test for `Fullyconnected` layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Rename remaining float16_t for future proof #25387
Resolves comment: https://github.com/opencv/opencv/pull/25217#discussion_r1547733187.
`std::float16_t` and `std::bfloat16_t` are introduced since c++23: https://en.cppreference.com/w/cpp/types/floating-point.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
core: persistence: output reals as human-friendly expression. #25351Close#25073
Related https://github.com/opencv/opencv/pull/25087
This patch is need to merge same time with https://github.com/opencv/opencv_contrib/pull/3714
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
imgproc: fix unaligned memory access in filters and Gaussian blur #25364
* filter/SIMD: removed parts which casted 8u pointers to int causing unaligned memory access on RISC-V platform.
* GaussianBlur/fixed_point: replaced casts from s16 to u32 with union operations
Performance comparison:
- [x] check performance on x86_64 - (4 threads, `-DCPU_BASELINE=AVX2`, GCC 11.4, Ubuntu 22) - [report_imgproc_x86_64.ods](https://github.com/opencv/opencv/files/14904702/report_x86_64.ods)
- [x] check performance on AArch64 - (4 cores of RK3588, GCC 11.4 aarch64, Raspbian) - [report_imgproc_aarch64.ods](https://github.com/opencv/opencv/files/14908437/report_aarch64.ods)
Note: for some reason my performance results are quite unstable, unaffected functions show speedups and slowdowns in many cases. Filter2D and GaussianBlur seem to be OK.
Slightly related PR: https://github.com/opencv/ci-gha-workflow/pull/165
Added int support to padding layer #25241
Added int32 and int64 support to padding layer (CPU and CUDA).
ONNX parser doesn't convert non-zero padding value to float now.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Reworked findContours to reduce C-API usage #25146
What is done:
* rewritten `findContours` and `icvApproximateChainTC89` using C++ data structures
* extracted LINK_RUNS mode to separate new public functions - `findContoursLinkRuns` (it uses completely different algorithm)
* ~added new public `cv::approximateChainTC89`~ - **❌ decided to hide it**
* enabled chain code output (method = 0, no public enum value for this in C++ yet)
* kept old function as `findContours_old` (exported, but not exposed to user)
* added more tests for findContours (`test_contours_new.cpp`), some tests compare results of old function with new one. Following tests have been added:
* contours of random rectangle
* contours of many small (1-2px) blobs
* contours of random noise
* backport of old accuracy test
* separate test for LINK RUNS variant
What is left to be done (can be done now or later):
* improve tests:
* some tests have limited verification (e.g. only verify contour sizes)
* perhaps reference data can be collected and stored
* maybe more test variants can be added (?)
* add enum value for chain code output and a method of returning starting points (e.g. first 8 elements of returned `vector<uchar>` can represent 2 int point coordinates)
* add documentation for new functions - **✔️ DONE**
* check and improve performance (my experiment showed 0.7x-1.1x some time ago)
* remove old functions completely (?)
* change contour return order (BFS) or allow to select it (?)
* return result tree as-is (?) (new data structures should be exposed, bindings should adapt)
core: doc: add note for countNonZero, hasNonZero and findNonZero #25356Close#25345
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
1D Scatter Layer Test #25071
This PR introduces parametrized test for `Scatter` layer to test its functionality for 1D arrays
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added int tests for CumSum, Scatter, Tile and ReduceSum dnn layers #25277
Fixed bug in tile layer.
Fixed bug in reduce layer by reimplementing the layer.
Fixed types filter in Scatter and ScatterND layers
PR for extra: https://github.com/opencv/opencv_extra/pull/1161
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
OBJ and PLY loaders extention to support texture coordinates and difused colors #25221
### This PR changes
* Texture coordinates support added to `loadMesh()` and `saveMesh()`
* `loadMesh()` changes its behavior: all vertex attribute arrays (vertex coordinates, colors, normals, texture coordinates) now have the same size and same-index corresponce
- This makes sense for OBJ files where vertex attribute arrays are independent from each other and are randomly accessed when defining faces
- Looks like this behavior may also happen in some PLY files; however, it is not implemented until we encounter such files in a wild nature
- At the same time `loadPointCloud()` keeps its behavior and loads vertex attributes as they are given in the file
* PLY loader supports synonyms for the properties: `diffuse_red`, `diffuse_green` and `diffuse_blue` along with `red`, `green` and `blue`
* `std::vector<cv::Vec3i>` supported as an index array type
* Colors are loaded as [0, 1] floats instead of uchars
- Since colors are usually saved as floats, internal conversion to uchar at loading significantly drops accuracy
- Performing uchar conversion does not always makes sense and can be performed by a user if they needs it
* PLY loading fixed: wrong offset ruined x coordinate
* Python tests added for `loadPointCloud` and `loadMesh`
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Concat Layer 0/1D test #25224
This PR introduces parametrized `0/1D` input support test for `Concat` layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
[BugFix] dnn (ONNX): Foce dropping constant inputs in parseClip if they are shared #25319
Resolves https://github.com/opencv/opencv/issues/25278
Merge with https://github.com/opencv/opencv_extra/pull/1165
In Gold-YOLO ,`Div` has a constant input `B=6` which is then parsed into a `Const` layer in the ONNX importer, but `Clip` also has the shared constant input `max=6` which is already a `Const` layer and then connected to `Elementwise` layer. This should not happen because in the `forward()` of `Elementwise` layer, the legacy code goes through and apply activation to each input. More details on https://github.com/opencv/opencv/issues/25278#issuecomment-2032199630.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Ownership check in TFLite importer #25312
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/25310
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Optimize int8 layers in DNN modules by using RISC-V Vector intrinsic. #25230
This patch optimize 3 functions in the int8 layer by using RVV Native Intrinsic.
This patch was tested on QEMU using VLEN=128 and VLEN=256 on `./bin/opencv_test_dnn --gtest_filter="*Int8*"`;
On the real device (k230, VLEN=128), `EfficientDet_int8` in `opencv_perf_dnn` showed a performance improvement of 1.46x.
| Name of Test | Original | optimized | Speed-up |
| ------------------------------------------ | -------- | ---------- | -------- |
| EfficientDet_int8::DNNTestNetwork::OCV/CPU | 2843.467 | 1947.013 | 1.46 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
imgcodecs: jpeg: re-support to read CMYK Jpeg #25280Close#25274
OpenCV Extra: https://github.com/opencv/opencv_extra/pull/1163
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Merge with https://github.com/opencv/opencv_extra/pull/1158
Todo:
- [x] Fix Attention pattern recognition.
- [x] Handle other backends.
Benchmark:
"VIT_B_32 OCV/CPU", M1, results in milliseconds.
| Model | 4.x | This PR |
| - | - | - |
| VIT_B_32 OCV/CPU | 87.66 | **83.83** |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Orbbec Camera supports MacOS,Gemini2 and Gemini2L support Y16 format #24877
note:
1.Gemini2 and Gemini2L must use the latest firmware -- https://github.com/orbbec/OrbbecFirmware;
2.Administrator privileges are necessary to run on MacOS.
Add imread #24415
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Hello everyone,
I created this new version of the imread function and I think it can be very useful in several cases.
It is actually passed to it object on which you want to upload the image.
The advantages can be different like in case one needs to open several large images all the same in sequence.
one can use the same pointer and the system would not allocate memory each time.
libjpeg upgrade to version 9f #25092
Upgrade libjpeg dependency from version 9d to 9f.
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
The parallel code works out how many CPUs are on the system by checking
the quota it has been assigned in the Linux cgroup. The existing code
works under cgroups v1 but the file structure changed in cgroups v2.
From [1]:
"cpu.cfs_quota_us" and "cpu.cfs_period_us" are replaced by "cpu.max"
which contains both quota and period.
This commit add support to parallel so it will read from the cgroups v2
location. v1 support is still retained.
Resolves#25284
[1] 0d5936344f
Speed up adaptive threshold in findChessboardCorners #25177
### Pull Request Readiness Checklist
If `block_size` hasn't been changed between iterations for same `k`, then all `adaptiveThreshold` arguments will be same and we can reuse result from previous iteration.
I tested this PR with benchmark
```
python3 objdetect_benchmark.py --configuration=generate_run --board_x=7 --path=res_chessboard --synthetic_object=chessboard
```
PR speed up chessboards detection by `7.5/17%` without any changes in detected chessboards number:
```
cell_img_size = 100 (default)
before
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.904167 13020 14400 0.600512
Total detected time: 107.27875600000003 sec
after
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.904167 13020 14400 0.600512
Total detected time: 99.0223499999999 sec
----------------------------------------------------------------------------------------------------------------------------------------------
cell_img_size = 10
before
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.539792 7773 14400 4.209964
Total detected time: 2.989205999999999 sec
after
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.539792 7773 14400 4.209964
Total detected time: 2.4802350000000013 sec
```
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Added in-place support for cartToPolar and polarToCart #24893
- a fused hal::cartToPolar[32|64]f() is used instead of sequential hal::magnitude[32|64]f/hal::fastAtan[32|64]f
- ipp_polarToCart is skipped for in-place processing (it seems not to support it correctly)
relates to #24891
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
0D test for split layer #25205
This PR introduces parametrized `0/1D` input support test for `Split` layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: avoid const layer forwarding in layer norm layer and attention layer #25238
While profiling ViTs with dnn, I found `ConstLayer` can take a proportion of the inference time, which is weird. This comes from the data copy during the inference of `ConstLayer`. There is a chance that we can improve the efficiency of data copying but the easiest and most convenient way is to avoid `ConstLayer`. This PR change the way how we handle constants in layer normalization layer and attention layer, which is storing in the layer blobs instead of making constant layers for them.
Checklists:
- [x] Backend compatibility in layer normalization layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
doc: add note on handling of spaces in CommandLineParser #25237
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added note that this class will not work properly if tabs and other whitespace characters are included in the key.
The support of whitespace characters by istringstream, etc. is on hold because the future of this class is not clear compared to implementations in Python and other languages.
Allowed int types in Tile and Reduce layers #25218
Allowed any Mat type in Tile layer.
Allowed int64 type in Reduce layer.
ONNX tests with int32 and int64 inputs will be added later in a separate PR
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn (CANN): Fix incorrect shape of 1d bias in Gemm #25166
Gemm layer was refactored some time ago. Users found that the mobilenet example in https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend does not work because of incorrect shape set for 1d bias in Gemm. This PR resolves this issue.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Release convolution weightsMat after usage #25181
### Pull Request Readiness Checklist
related (but not resolved): https://github.com/opencv/opencv/issues/24134
Minor memory footprint improvement. Also, adds a test for VmHWM.
RAM top memory usage (-230MB)
| YOLOv3 (237MB file) | 4.x | PR |
|---------------------|---------|---------|
| no winograd | 808 MB | 581 MB |
| winograd | 1985 MB | 1750 MB |
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Normaly, we sets IMWRITE_* flags for imwrite() params.
But imgcodecs expects to use some TIFFTAG_* directory.
This patch introduce IMWRITE_TIFF_ROWSPERSTRIP and
IMWRITE_TIFF_PREDICTOR instead of TIFFTAG_*.
* libtiff upgrade to version 4.6.0
* fix tiffvers.h cmake generation
* temp: force build 3rd party deps from source
* remove libport.h and spintf.c
* cmake fixes
* don't use tiff_dummy_namespace on windows
* introduce numeric_types namespace alias
* include cstdint
* uint16_t is not a numeric_types type
* fix uint16 and uint32 type defs
* use standard c++ types
* remove unused files
* remove more unused files
* revert build 3rd party code from source
---------
Co-authored-by: Misha Klatis <misha.klatis@autodesk.com>
G-API: A quick value-initialization support GMat #25055
This PR enables `GMat` objects to be value-initialized in the same way as it was done for `GScalar`s (and, possibly, other types).
- Added some helper methods in backends to distinguish if a certain G-type value initialization is supported or not;
- Added tests, including negative.
Where it is needed:
- Further extension of the OVCV backend (#24379 - will be refreshed soon);
- Further experiments with DNN module;
- Further experiments with "G-API behind UMat" sort of aggregation.
In the current form, PR can be reviewed & merged (@TolyaTalamanov please have a look)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
calib3d: doc: remove C API link (For 4.x) #25141
Related to #25140 (for 4.x)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Documentation transition to fresh Doxygen #25042
* current Doxygen version is 1.10, but we will use 1.9.8 for now due to issue with snippets (https://github.com/doxygen/doxygen/pull/10584)
* Doxyfile adapted to new version
* MathJax updated to 3.x
* `@relates` instructions removed temporarily due to issue in Doxygen (to avoid warnings)
* refactored matx.hpp - extracted matx.inl.hpp
* opencv_contrib - https://github.com/opencv/opencv_contrib/pull/3638
C-API cleanup: apps, imgproc_c and some constants #25075
Merge with https://github.com/opencv/opencv_contrib/pull/3642
* Removed obsolete apps - traincascade and createsamples (please use older OpenCV versions if you need them). These apps relied heavily on C-API
* removed all mentions of imgproc C-API headers (imgproc_c.h, types_c.h) - they were empty, included core C-API headers
* replaced usage of several C constants with C++ ones (error codes, norm modes, RNG modes, PCA modes, ...) - most part of this PR (split into two parts - all modules and calib+3d - for easier backporting)
* removed imgproc C-API headers (as separate commit, so that other changes could be backported to 4.x)
Most of these changes can be backported to 4.x.
Fixed ReduceMean layer behaviour #25120
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
Use std::priority_queue in inpaint function for performance improvement #25122
In `cv::inpaint` implementation, it uses a priority queue with O(n) time linear search. For large images it is very slow.
I replaced it with C++'s standard library `std::priority_queue`, that uses O(log(n)) algorithm.
In my use case, it is x10 faster than the original.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
[GSoC] Update octree methods and create frames for PCC #23985
## PR for GSoC Point Cloud Compression
[Issue for GSoC 2023](https://github.com/opencv/opencv/issues/23624)
* We are **updating the Octree method create() by using OctreeKey**: Through voxelization, directly calculate the leaf nodes that the point cloud belongs to, and omit the judgment whether the point cloud is in the range when inserted. The index of the child node is calculated by bit operation.
* We are also **introducing a new header file pcc.h (Point Cloud Compression) with API framework**.
* We added tests for restoring point clouds from an octree.
* Currently, the features related to octree creation and point cloud compression are part of the internal API, which means they are not directly accessible to users. However, our plan for the future is to **include only the 'PointCloudCompression' class in the 'opencv2/3d.hpp' header file**. This will provide an interface for utilizing the point cloud compression functionality.
The previous PR of this was closed due to repo name conflicts, therefore we resubmitted in this PR.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
First proposal of cv::remap with relative displacement field (#24603) #24621
Implements #24603
Currently, `remap()` is applied as `dst(x, y) <- src(mapX(x, y), mapY(x, y))` It means that the maps must be filled with absolute coordinates.
However, if one wants to remap something according to a displacement field ("warp"), the operation should be `dst(x, y) <- src(x+displacementX(x, y), y+displacementY(x, y))`
It is trivial to build a mapping from a displacement field, but it is an undesirable overhead for CPU and memory.
This PR implements the feature as an experimental option, through the optional flag WARP_RELATIVE_MAP than can be ORed to the interpolation mode.
Since the xy maps might be const, there is no attempt to add the coordinate offset to those maps, and everything is postponed on-the-fly to the very last coordinate computation before fetching `src`. Interestingly, this let `cv::convertMaps()` unchanged since the fractional part of interpolation does not care of the integer coordinate offset.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: try improving performance of Attention layer #25076
Checklist:
- [x] Use `Mat` over `Mat::zeros` for temporary buffer in forward
- [x] Use layer internal buffer over temporary Mat buffer
- [x] Try a single fastGemmBatch on the Q/K/V calculation
Performance:
Performance test case is `Layer_Attention.VisionTransformer/0`, which has input of shape {1, 197, 768}, weight of shape {768, 2304} and bias {2304}.
Data is in millisecond.
| | macOS 14.2.1, Apple M1 | Ubuntu 22.04.2, Intel i7 12700K |
| - | - | - |
| Current | 10.96 | 1.58 |
| w/ Mat | 6.27 | 1.41 |
| w/ Internals | 5.87 | 1.38 |
| w/ fastGemmBatch | 6.12 | 2.14 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix issue #25077#25100
Fixes https://github.com/opencv/opencv/issues/25077
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixes#25056 : Optimising postProcess(const std::vector<Mat>& output_blobs) #25091
Like mentioned in the issue #25056 , I think checking the condition with `scoreThreshold` and then assigning the bounding boxes can optimize the function pretty well. By doing this, we prevent allocating boxes to faces with scores below the threshold. It also reduces the amount of data that needs to be processed during the subsequent NMS step. Builds and passed locally.
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: Dhanwanth1803 <dhanwanthvarala@gmail,com>
Handle degenerate cases in RQDecomp3x3 #25050
The point of the Givens rotations here is to iteratively set the lower left matrix entries to zero. If an element is zero already, we don't need to do anything. This resolves#24330.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
RegisterCameras function for heterogenious cameras pair #25061
Credits to Linfei Pan
Extracted from https://github.com/opencv/opencv/pull/24052
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
---------
Co-authored-by: lpanaf <linpan@student.ethz.ch>
Move Aruco tutorials and samples to main repo #23018
merge with https://github.com/opencv/opencv_contrib/pull/3401
merge with https://github.com/opencv/opencv_extra/pull/1143
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
---------
Co-authored-by: AleksandrPanov <alexander.panov@xperience.ai>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
Compensate edge length in ChessBoardDetector::generateQuads (attempt 2) #25090
### Pull Request Readiness Checklist
New attempt for #24833, which was reverted as #25036.
Locally I fixed `Calib3d_StereoCalibrate_CPP.regression` test by corners refinement using `cornerSubPix` function
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Add compatibility with latest (3.1.54) emsdk version #25084
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
### Details
I was following [this tutorial](https://docs.opencv.org/4.9.0/d4/da1/tutorial_js_setup.html) for building opencv with wasm target. The tutorial mentions that the last verified version of emscripten that is tested with opencv is 2.0.10, but I was curious if I could get it to work with more recent versions. I've run into a few issues with the latest version, for which fixes are included in this PR. I've found a few issues that have the same problems I encountered:
- https://github.com/opencv/opencv/issues/24620
- https://github.com/opencv/opencv/issues/20313
- https://stackoverflow.com/questions/77469603/custom-opencv-js-wasm-using-cv-matfromarray-results-in-cv-mat-is-not-a-co
- https://github.com/emscripten-core/emscripten/issues/14803
- https://github.com/opencv/opencv/issues/24572
- https://github.com/opencv/opencv/issues/19493#issuecomment-857167996
I used the docker image for building and comparing results with different emsdk versions. I tested by building with `--build_wasm` and `--build-test` flags and ran the tests in the browser. I addressed the following issues with newer versions of emscripten:
- In newer versions `EMSCRIPTEN` environemnt variable was stopped being set. I added support for deriving location based on the `EMSDK` environment variable, as suggested [here](https://github.com/emscripten-core/emscripten/issues/14803)
- In newer versions emcmake started passing `-DCMAKE...` arguments, however the opencv python script didn't know how to handle them. I added processing to the args that will forward all arguments to `cmake` that start with `-D`. I opted for this in hopes of being more futureproof, but another approach could be just ignoreing them, or explicitly forwarding them instead of matching anything starting with `-D`. These approches were suggested [here](https://github.com/opencv/opencv/issues/19493#issuecomment-855529448)
- With [version 3.1.31](https://github.com/emscripten-core/emscripten/blob/main/ChangeLog.md#3131---012623) some previously exported functions stopped being automatically exported. Because of this, `_free` and `_malloc` were no longer available and had to be explicitly exported because of breaking tests.
- With [version 3.1.42](https://github.com/emscripten-core/emscripten/compare/3.1.41...3.1.42#diff-e505aa80b2764c0197acfc9afd8179b3600f0ab5dd00ff77db01879a84515cdbL3875) the `post-js` code doesn't receive the module named as `EXPORT_NAME` anymore, but only as `moduleArg`/`Module`. This broke existing code in `helpers.js`, which was referencing exported functions through `cv.Mat`, etc. I changed all of these references to use `Module.Mat`, etc. If it is preferred, alternatively the `cv` variable could be reintroduced in `helper.js` as suggested [here](https://github.com/opencv/opencv/issues/24620)
With the above changes in place, I can successfully build and run tests with the latest emscripten/emsdk docker image (also with 2.0.10 and most of the other older tags, except for a few that contain transient issues like [this](https://github.com/emscripten-core/emscripten/issues/17700)).
This is my first time contributing to opencv, so I hope I got everything correct in this PR, but please let me know if I should change anything!
G-API: Make test execution lighter (first attempt) #25060
### Background
G-API tests look running longer than tests for the rest of modules (e.g., 5m), and the analysis show that there's several outliers in G-API test suite which take a lot of time but don't improve the testing quality much:
![image](https://github.com/opencv/opencv/assets/144187/e6df013f-e548-47ac-a418-285b3f78c9f8)
In this PR I will cut the execution time to something reasonable.
### Contents
- Marked some outliers as `verylong`:
- OneVPL barrier test - pure brute force
- Stateful test in stream - in fact BG Sub accuracy test clone
- Restructured parameters instantiation in Streaming tests to generate less test configurations (54 -> 36)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix very slow compilation of five-point algorithm on some platforms (e.g. Qualcomm) #25064
Thanks to our big friend and long-term contributor for the patch!
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake