opencv/samples/dnn
2019-06-05 19:11:52 +03:00
..
face_detector Update face detection network in samples 2018-08-14 13:16:23 +03:00
action_recognition.py Merge pull request #14627 from l-bat:demo_kinetics 2019-05-30 17:36:00 +03:00
classification.cpp Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
classification.py Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
CMakeLists.txt cmake(samples): use LINK_PRIVATE in target_link_libraries 2019-05-15 18:38:00 +03:00
colorization.cpp samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
colorization.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 2018-06-04 18:31:46 +03:00
common.hpp Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-10-26 17:56:55 +03:00
common.py samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
custom_layers.hpp Merge pull request #12264 from dkurt:dnn_remove_forward_method 2018-09-06 13:26:47 +03:00
edge_detection.py Fix edge_detection.py sample for Python 3 2019-01-09 15:28:10 +03:00
fast_neural_style.py samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
js_face_recognition.html documentation: avoid links to 'master' branch from 3.4 maintenance branch (2) 2018-05-31 19:30:56 +03:00
mask_rcnn.py samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
mobilenet_ssd_accuracy.py samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
models.yml dnn/samples: add googlenet to model zoo 2019-01-17 12:14:35 +01:00
object_detection.cpp Asynchronous C++ sample 2019-05-14 19:09:07 +03:00
object_detection.py Async mode for dnn's object detection sample 2019-05-14 09:58:47 +03:00
openpose.cpp Fix openpose samples 2018-12-25 14:12:44 -01:00
openpose.py Fix openpose samples 2018-12-25 14:12:44 -01:00
README.md Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-04-19 15:43:58 +03:00
segmentation.cpp Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-10-13 16:19:05 +00:00
segmentation.py Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 2017-10-08 22:25:29 +03:00
text_detection.cpp core: repair CV_Assert() messages 2018-08-15 17:43:10 +03:00
text_detection.py Merge pull request #13432 from vishwesh5:patch-1 2018-12-18 13:40:04 +03:00
tf_text_graph_common.py fix tf_text_graph_common tensor_content type bug 2019-02-26 01:20:54 +08:00
tf_text_graph_faster_rcnn.py StridedSlice from TensorFlow 2019-05-22 12:45:52 +03:00
tf_text_graph_mask_rcnn.py Enable ResNet-based Mask-RCNN models from TensorFlow Object Detection API 2019-02-06 13:05:11 +03:00
tf_text_graph_ssd.py extends regex matching for conv group of layers 2019-05-07 16:17:25 +02:00

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References