2010-10-18 19:12:14 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
2010-12-07 00:37:32 +08:00
|
|
|
#include "opencv2/gpu/device/limits_gpu.hpp"
|
|
|
|
#include "opencv2/gpu/device/saturate_cast.hpp"
|
2010-12-15 23:12:32 +08:00
|
|
|
#include "opencv2/gpu/device/vecmath.hpp"
|
2010-10-20 16:50:14 +08:00
|
|
|
#include "transform.hpp"
|
2010-12-07 00:37:32 +08:00
|
|
|
#include "internal_shared.hpp"
|
2010-10-18 19:12:14 +08:00
|
|
|
|
|
|
|
using namespace cv::gpu;
|
2010-11-25 17:57:02 +08:00
|
|
|
using namespace cv::gpu::device;
|
2010-10-18 19:12:14 +08:00
|
|
|
|
|
|
|
#ifndef CV_PI
|
|
|
|
#define CV_PI 3.1415926535897932384626433832795f
|
|
|
|
#endif
|
|
|
|
|
2010-10-20 16:50:14 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Cart <-> Polar
|
|
|
|
|
2010-10-31 21:23:25 +08:00
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
2010-10-18 19:12:14 +08:00
|
|
|
{
|
2010-12-10 18:23:32 +08:00
|
|
|
template <int size, typename T>
|
|
|
|
__device__ void sum_in_smem(volatile T* data, const unsigned int tid)
|
|
|
|
{
|
|
|
|
T sum = data[tid];
|
|
|
|
|
|
|
|
if (size >= 512) { if (tid < 256) { data[tid] = sum = sum + data[tid + 256]; } __syncthreads(); }
|
|
|
|
if (size >= 256) { if (tid < 128) { data[tid] = sum = sum + data[tid + 128]; } __syncthreads(); }
|
|
|
|
if (size >= 128) { if (tid < 64) { data[tid] = sum = sum + data[tid + 64]; } __syncthreads(); }
|
|
|
|
|
|
|
|
if (tid < 32)
|
|
|
|
{
|
|
|
|
if (size >= 64) data[tid] = sum = sum + data[tid + 32];
|
|
|
|
if (size >= 32) data[tid] = sum = sum + data[tid + 16];
|
|
|
|
if (size >= 16) data[tid] = sum = sum + data[tid + 8];
|
|
|
|
if (size >= 8) data[tid] = sum = sum + data[tid + 4];
|
|
|
|
if (size >= 4) data[tid] = sum = sum + data[tid + 2];
|
|
|
|
if (size >= 2) data[tid] = sum = sum + data[tid + 1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-10-18 19:12:14 +08:00
|
|
|
struct Nothing
|
|
|
|
{
|
|
|
|
static __device__ void calc(int, int, float, float, float*, size_t, float)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
};
|
|
|
|
struct Magnitude
|
|
|
|
{
|
|
|
|
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
|
|
|
|
{
|
|
|
|
dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
struct MagnitudeSqr
|
|
|
|
{
|
|
|
|
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
|
|
|
|
{
|
|
|
|
dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
struct Atan2
|
|
|
|
{
|
|
|
|
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
|
|
|
|
{
|
|
|
|
dst[y * dst_step + x] = scale * atan2f(y_data, x_data);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
template <typename Mag, typename Angle>
|
|
|
|
__global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
|
|
|
|
float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
|
|
|
|
{
|
|
|
|
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
|
|
|
|
|
|
|
if (x < width && y < height)
|
|
|
|
{
|
|
|
|
float x_data = xptr[y * x_step + x];
|
|
|
|
float y_data = yptr[y * y_step + x];
|
|
|
|
|
|
|
|
Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
|
|
|
|
Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct NonEmptyMag
|
|
|
|
{
|
|
|
|
static __device__ float get(const float* mag, size_t mag_step, int x, int y)
|
|
|
|
{
|
|
|
|
return mag[y * mag_step + x];
|
|
|
|
}
|
|
|
|
};
|
|
|
|
struct EmptyMag
|
|
|
|
{
|
|
|
|
static __device__ float get(const float*, size_t, int, int)
|
|
|
|
{
|
|
|
|
return 1.0f;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
template <typename Mag>
|
|
|
|
__global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
|
|
|
|
float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
|
|
|
|
{
|
|
|
|
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
|
|
|
|
|
|
|
if (x < width && y < height)
|
|
|
|
{
|
|
|
|
float mag_data = Mag::get(mag, mag_step, x, y);
|
|
|
|
float angle_data = angle[y * angle_step + x];
|
|
|
|
float sin_a, cos_a;
|
|
|
|
|
|
|
|
sincosf(scale * angle_data, &sin_a, &cos_a);
|
|
|
|
|
|
|
|
xptr[y * x_step + x] = mag_data * cos_a;
|
|
|
|
yptr[y * y_step + x] = mag_data * sin_a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Mag, typename Angle>
|
|
|
|
void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
dim3 threads(16, 16, 1);
|
|
|
|
dim3 grid(1, 1, 1);
|
|
|
|
|
|
|
|
grid.x = divUp(x.cols, threads.x);
|
|
|
|
grid.y = divUp(x.rows, threads.y);
|
|
|
|
|
|
|
|
const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f;
|
|
|
|
|
2010-10-31 21:23:25 +08:00
|
|
|
cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
|
|
|
|
x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
|
|
|
|
mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows);
|
2010-10-18 19:12:14 +08:00
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
|
|
|
|
static const caller_t callers[2][2][2] =
|
|
|
|
{
|
|
|
|
{
|
|
|
|
{
|
2010-10-31 21:23:25 +08:00
|
|
|
cartToPolar_caller<Magnitude, Atan2>,
|
|
|
|
cartToPolar_caller<Magnitude, Nothing>
|
2010-10-18 19:12:14 +08:00
|
|
|
},
|
|
|
|
{
|
2010-10-31 21:23:25 +08:00
|
|
|
cartToPolar_caller<MagnitudeSqr, Atan2>,
|
|
|
|
cartToPolar_caller<MagnitudeSqr, Nothing>,
|
2010-10-18 19:12:14 +08:00
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
{
|
2010-10-31 21:23:25 +08:00
|
|
|
cartToPolar_caller<Nothing, Atan2>,
|
|
|
|
cartToPolar_caller<Nothing, Nothing>
|
2010-10-18 19:12:14 +08:00
|
|
|
},
|
|
|
|
{
|
2010-10-31 21:23:25 +08:00
|
|
|
cartToPolar_caller<Nothing, Atan2>,
|
|
|
|
cartToPolar_caller<Nothing, Nothing>,
|
2010-10-18 19:12:14 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2010-10-31 21:23:25 +08:00
|
|
|
callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream);
|
2010-10-18 19:12:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Mag>
|
|
|
|
void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
dim3 threads(16, 16, 1);
|
|
|
|
dim3 grid(1, 1, 1);
|
|
|
|
|
|
|
|
grid.x = divUp(mag.cols, threads.x);
|
|
|
|
grid.y = divUp(mag.rows, threads.y);
|
|
|
|
|
|
|
|
const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f;
|
|
|
|
|
2010-10-31 21:23:25 +08:00
|
|
|
polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
|
|
|
|
angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
|
2010-10-18 19:12:14 +08:00
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
|
|
|
|
static const caller_t callers[2] =
|
|
|
|
{
|
2010-10-31 21:23:25 +08:00
|
|
|
polarToCart_caller<NonEmptyMag>,
|
|
|
|
polarToCart_caller<EmptyMag>
|
2010-10-18 19:12:14 +08:00
|
|
|
};
|
|
|
|
|
2010-10-31 21:23:25 +08:00
|
|
|
callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
|
2010-10-18 19:12:14 +08:00
|
|
|
}
|
2010-10-20 16:50:14 +08:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Compare
|
|
|
|
|
|
|
|
template <typename T1, typename T2>
|
|
|
|
struct NotEqual
|
|
|
|
{
|
2010-11-24 17:43:17 +08:00
|
|
|
__device__ uchar operator()(const T1& src1, const T2& src2)
|
2010-10-20 16:50:14 +08:00
|
|
|
{
|
|
|
|
return static_cast<uchar>(static_cast<int>(src1 != src2) * 255);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T1, typename T2>
|
|
|
|
inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
|
|
|
|
{
|
2010-10-31 21:23:25 +08:00
|
|
|
NotEqual<T1, T2> op;
|
2010-10-20 16:50:14 +08:00
|
|
|
transform(static_cast< DevMem2D_<T1> >(src1), static_cast< DevMem2D_<T2> >(src2), dst, op, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
|
|
|
|
{
|
|
|
|
compare_ne<uint, uint>(src1, src2, dst);
|
|
|
|
}
|
|
|
|
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
|
|
|
|
{
|
|
|
|
compare_ne<float, float>(src1, src2, dst);
|
|
|
|
}
|
2010-11-19 18:19:35 +08:00
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Per-element bit-wise logical matrix operations
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
struct Mask8U
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
2010-11-22 17:39:34 +08:00
|
|
|
explicit Mask8U(PtrStep mask): mask(mask) {}
|
2010-11-29 21:56:43 +08:00
|
|
|
__device__ bool operator()(int y, int x) const { return mask.ptr(y)[x]; }
|
2010-11-22 17:39:34 +08:00
|
|
|
PtrStep mask;
|
|
|
|
};
|
2010-11-29 21:56:43 +08:00
|
|
|
struct MaskTrue { __device__ bool operator()(int y, int x) const { return true; } };
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
// Unary operations
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
enum { UN_OP_NOT };
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T, int opid>
|
2010-12-17 18:26:57 +08:00
|
|
|
struct UnOp;
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T>
|
2010-12-17 18:26:57 +08:00
|
|
|
struct UnOp<T, UN_OP_NOT>
|
|
|
|
{
|
|
|
|
static __device__ T call(T x)
|
|
|
|
{
|
|
|
|
return ~x;
|
|
|
|
}
|
|
|
|
};
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T, int cn, typename UnOp, typename Mask>
|
2010-12-17 18:26:57 +08:00
|
|
|
__global__ void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, Mask mask)
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
|
|
|
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
if (x < cols && y < rows && mask(y, x))
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
2010-11-22 17:39:34 +08:00
|
|
|
T* dsty = (T*)dst.ptr(y);
|
|
|
|
const T* srcy = (const T*)src.ptr(y);
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int i = 0; i < cn; ++i)
|
2010-12-17 18:26:57 +08:00
|
|
|
dsty[cn * x + i] = UnOp::call(srcy[cn * x + i]);
|
2010-11-19 18:19:35 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <int opid, typename Mask>
|
|
|
|
void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream)
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
2010-11-22 17:39:34 +08:00
|
|
|
dim3 threads(16, 16);
|
|
|
|
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
|
|
|
|
switch (elem_size)
|
|
|
|
{
|
2010-12-17 18:26:57 +08:00
|
|
|
case 1:
|
|
|
|
bitwise_un_op<unsigned char, 1, UnOp<unsigned char, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
bitwise_un_op<unsigned short, 1, UnOp<unsigned short, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
bitwise_un_op<unsigned char, 3, UnOp<unsigned char, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
bitwise_un_op<unsigned int, 1, UnOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 6:
|
|
|
|
bitwise_un_op<unsigned short, 3, UnOp<unsigned short, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
bitwise_un_op<unsigned int, 2, UnOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 12:
|
|
|
|
bitwise_un_op<unsigned int, 3, UnOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
bitwise_un_op<unsigned int, 4, UnOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
bitwise_un_op<unsigned int, 6, UnOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
|
|
|
case 32:
|
|
|
|
bitwise_un_op<unsigned int, 8, UnOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src, dst, mask);
|
|
|
|
break;
|
2010-11-22 17:39:34 +08:00
|
|
|
}
|
|
|
|
if (stream == 0) cudaSafeCall(cudaThreadSynchronize());
|
2010-11-19 18:19:35 +08:00
|
|
|
}
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, cudaStream_t stream)
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
2010-11-22 17:39:34 +08:00
|
|
|
bitwise_un_op<UN_OP_NOT>(rows, cols, src, dst, elem_size, MaskTrue(), stream);
|
|
|
|
}
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
bitwise_un_op<UN_OP_NOT>(rows, cols, src, dst, elem_size, Mask8U(mask), stream);
|
2010-11-19 18:19:35 +08:00
|
|
|
}
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
// Binary operations
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR };
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T, int opid>
|
2010-12-17 18:26:57 +08:00
|
|
|
struct BinOp;
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T>
|
2010-12-17 18:26:57 +08:00
|
|
|
struct BinOp<T, BIN_OP_OR>
|
|
|
|
{
|
|
|
|
static __device__ T call(T lhs, T rhs)
|
|
|
|
{
|
|
|
|
return lhs | rhs;
|
|
|
|
}
|
|
|
|
};
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T>
|
2010-12-17 18:26:57 +08:00
|
|
|
struct BinOp<T, BIN_OP_AND>
|
|
|
|
{
|
|
|
|
static __device__ T call(T lhs, T rhs)
|
|
|
|
{
|
|
|
|
return lhs & rhs;
|
|
|
|
}
|
|
|
|
};
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T>
|
2010-12-17 18:26:57 +08:00
|
|
|
struct BinOp<T, BIN_OP_XOR>
|
|
|
|
{
|
|
|
|
static __device__ T call(T lhs, T rhs)
|
|
|
|
{
|
|
|
|
return lhs ^ rhs;
|
|
|
|
}
|
|
|
|
};
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <typename T, int cn, typename BinOp, typename Mask>
|
2010-12-17 18:26:57 +08:00
|
|
|
__global__ void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, Mask mask)
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
|
|
|
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
if (x < cols && y < rows && mask(y, x))
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
2010-11-22 17:39:34 +08:00
|
|
|
T* dsty = (T*)dst.ptr(y);
|
|
|
|
const T* src1y = (const T*)src1.ptr(y);
|
|
|
|
const T* src2y = (const T*)src2.ptr(y);
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int i = 0; i < cn; ++i)
|
2010-12-17 18:26:57 +08:00
|
|
|
dsty[cn * x + i] = BinOp::call(src1y[cn * x + i], src2y[cn * x + i]);
|
2010-11-19 18:19:35 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
template <int opid, typename Mask>
|
|
|
|
void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
dim3 threads(16, 16);
|
|
|
|
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
|
|
|
|
switch (elem_size)
|
|
|
|
{
|
2010-12-17 18:26:57 +08:00
|
|
|
case 1:
|
|
|
|
bitwise_bin_op<unsigned char, 1, BinOp<unsigned char, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
bitwise_bin_op<unsigned short, 1, BinOp<unsigned short, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
bitwise_bin_op<unsigned char, 3, BinOp<unsigned char, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
bitwise_bin_op<unsigned int, 1, BinOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 6:
|
|
|
|
bitwise_bin_op<unsigned short, 3, BinOp<unsigned short, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
bitwise_bin_op<unsigned int, 2, BinOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 12:
|
|
|
|
bitwise_bin_op<unsigned int, 3, BinOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
bitwise_bin_op<unsigned int, 4, BinOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
bitwise_bin_op<unsigned int, 6, BinOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
|
|
|
case 32:
|
|
|
|
bitwise_bin_op<unsigned int, 8, BinOp<unsigned int, opid> ><<<grid, threads>>>(rows, cols, src1, src2, dst, mask);
|
|
|
|
break;
|
2010-11-22 17:39:34 +08:00
|
|
|
}
|
|
|
|
if (stream == 0) cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
}
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream)
|
2010-11-19 18:19:35 +08:00
|
|
|
{
|
2010-11-22 17:39:34 +08:00
|
|
|
bitwise_bin_op<BIN_OP_OR>(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream);
|
|
|
|
}
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
bitwise_bin_op<BIN_OP_OR>(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream);
|
|
|
|
}
|
2010-11-19 18:19:35 +08:00
|
|
|
|
2010-11-22 17:39:34 +08:00
|
|
|
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
bitwise_bin_op<BIN_OP_AND>(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
bitwise_bin_op<BIN_OP_AND>(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
bitwise_bin_op<BIN_OP_XOR>(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream);
|
2010-11-19 18:19:35 +08:00
|
|
|
}
|
2010-11-22 17:39:34 +08:00
|
|
|
|
|
|
|
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
bitwise_bin_op<BIN_OP_XOR>(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream);
|
|
|
|
}
|
2010-11-24 16:55:52 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Min max
|
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
// To avoid shared bank conflicts we convert each value into value of
|
2010-11-25 17:57:02 +08:00
|
|
|
// appropriate type (32 bits minimum)
|
2010-11-24 17:19:11 +08:00
|
|
|
template <typename T> struct MinMaxTypeTraits {};
|
|
|
|
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; };
|
2010-11-29 21:21:43 +08:00
|
|
|
template <> struct MinMaxTypeTraits<char> { typedef int best_type; };
|
2010-11-24 17:19:11 +08:00
|
|
|
template <> struct MinMaxTypeTraits<unsigned short> { typedef int best_type; };
|
2010-11-29 21:21:43 +08:00
|
|
|
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
|
2010-11-24 17:19:11 +08:00
|
|
|
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
|
|
|
|
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
|
|
|
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
|
|
|
|
namespace minmax
|
2010-11-24 16:55:52 +08:00
|
|
|
{
|
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
__constant__ int ctwidth;
|
|
|
|
__constant__ int ctheight;
|
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
// Global counter of blocks finished its work
|
2010-11-29 16:09:54 +08:00
|
|
|
__device__ unsigned int blocks_finished = 0;
|
2010-11-25 18:19:06 +08:00
|
|
|
|
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
// Estimates good thread configuration
|
|
|
|
// - threads variable satisfies to threads.x * threads.y == 256
|
2010-11-30 20:27:21 +08:00
|
|
|
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
2010-11-30 20:27:21 +08:00
|
|
|
threads = dim3(32, 8);
|
|
|
|
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
|
2010-12-10 21:36:00 +08:00
|
|
|
grid.x = min(grid.x, threads.x);
|
|
|
|
grid.y = min(grid.y, threads.y);
|
2010-11-25 17:57:02 +08:00
|
|
|
}
|
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
// Returns required buffer sizes
|
2010-11-30 20:27:21 +08:00
|
|
|
void get_buf_size_required(int cols, int rows, int elem_size, int& bufcols, int& bufrows)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(cols, rows, threads, grid);
|
|
|
|
bufcols = grid.x * grid.y * elem_size;
|
|
|
|
bufrows = 2;
|
2010-11-25 17:57:02 +08:00
|
|
|
}
|
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
// Estimates device constants which are used in the kernels using specified thread configuration
|
2010-11-30 20:27:21 +08:00
|
|
|
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
|
|
|
int twidth = divUp(divUp(cols, grid.x), threads.x);
|
|
|
|
int theight = divUp(divUp(rows, grid.y), threads.y);
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth)));
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight)));
|
|
|
|
}
|
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
// Does min and max in shared memory
|
2010-11-24 16:55:52 +08:00
|
|
|
template <typename T>
|
2010-11-25 17:57:02 +08:00
|
|
|
__device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval)
|
2010-11-24 16:55:52 +08:00
|
|
|
{
|
2010-11-25 17:57:02 +08:00
|
|
|
minval[tid] = min(minval[tid], minval[tid + offset]);
|
|
|
|
maxval[tid] = max(maxval[tid], maxval[tid + offset]);
|
|
|
|
}
|
2010-11-24 16:55:52 +08:00
|
|
|
|
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
template <int size, typename T>
|
|
|
|
__device__ void find_min_max_in_smem(volatile T* minval, volatile T* maxval, const unsigned int tid)
|
|
|
|
{
|
|
|
|
if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval); } __syncthreads(); }
|
|
|
|
if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval); } __syncthreads(); }
|
|
|
|
if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval); } __syncthreads(); }
|
|
|
|
|
|
|
|
if (tid < 32)
|
|
|
|
{
|
|
|
|
if (size >= 64) merge(tid, 32, minval, maxval);
|
|
|
|
if (size >= 32) merge(tid, 16, minval, maxval);
|
|
|
|
if (size >= 16) merge(tid, 8, minval, maxval);
|
|
|
|
if (size >= 8) merge(tid, 4, minval, maxval);
|
|
|
|
if (size >= 4) merge(tid, 2, minval, maxval);
|
|
|
|
if (size >= 2) merge(tid, 1, minval, maxval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
template <int nthreads, typename T, typename Mask>
|
|
|
|
__global__ void min_max_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval)
|
2010-11-24 16:55:52 +08:00
|
|
|
{
|
2010-11-24 17:19:11 +08:00
|
|
|
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
2010-11-25 17:57:02 +08:00
|
|
|
__shared__ best_type sminval[nthreads];
|
|
|
|
__shared__ best_type smaxval[nthreads];
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
2010-11-24 16:55:52 +08:00
|
|
|
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
T mymin = numeric_limits_gpu<T>::max();
|
2010-11-29 21:21:43 +08:00
|
|
|
T mymax = numeric_limits_gpu<T>::is_signed ? -numeric_limits_gpu<T>::max() : numeric_limits_gpu<T>::min();
|
2010-11-29 18:29:21 +08:00
|
|
|
unsigned int y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
|
|
|
|
unsigned int x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
|
|
|
|
for (unsigned int y = y0; y < y_end; y += blockDim.y)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
2010-11-29 18:29:21 +08:00
|
|
|
const T* src_row = (const T*)src.ptr(y);
|
|
|
|
for (unsigned int x = x0; x < x_end; x += blockDim.x)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
2010-11-29 18:29:21 +08:00
|
|
|
T val = src_row[x];
|
|
|
|
if (mask(y, x))
|
|
|
|
{
|
|
|
|
mymin = min(mymin, val);
|
|
|
|
mymax = max(mymax, val);
|
|
|
|
}
|
2010-11-25 17:57:02 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sminval[tid] = mymin;
|
|
|
|
smaxval[tid] = mymax;
|
2010-11-24 16:55:52 +08:00
|
|
|
__syncthreads();
|
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
find_min_max_in_smem<nthreads, best_type>(sminval, smaxval, tid);
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
|
|
|
|
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
2010-11-29 16:04:39 +08:00
|
|
|
__shared__ bool is_last;
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
|
|
|
|
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
|
|
|
|
__threadfence();
|
|
|
|
|
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = ticket == gridDim.x * gridDim.y - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
|
|
|
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
|
|
|
|
|
|
|
|
sminval[tid] = minval[idx];
|
|
|
|
smaxval[tid] = maxval[idx];
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
find_min_max_in_smem<nthreads, best_type>(sminval, smaxval, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
2010-11-29 16:04:39 +08:00
|
|
|
minval[0] = (T)sminval[0];
|
|
|
|
maxval[0] = (T)smaxval[0];
|
2010-11-29 16:09:54 +08:00
|
|
|
blocks_finished = 0;
|
2010-11-25 17:57:02 +08:00
|
|
|
}
|
2010-11-29 16:04:39 +08:00
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
|
|
|
|
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
|
2010-11-25 17:57:02 +08:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
template <typename T>
|
|
|
|
void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf)
|
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-29 18:29:21 +08:00
|
|
|
|
|
|
|
T* minval_buf = (T*)buf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)buf.ptr(1);
|
|
|
|
|
|
|
|
min_max_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf);
|
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
T minval_, maxval_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
|
|
|
}
|
|
|
|
|
|
|
|
template void min_max_mask_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_mask_caller<char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_mask_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_mask_caller<short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_mask_caller<int>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
template void min_max_mask_caller<float>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
template void min_max_mask_caller<double>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
|
|
|
|
|
2010-11-24 16:55:52 +08:00
|
|
|
template <typename T>
|
2010-11-25 18:19:06 +08:00
|
|
|
void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf)
|
2010-11-24 16:55:52 +08:00
|
|
|
{
|
2010-11-25 17:57:02 +08:00
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
T* minval_buf = (T*)buf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)buf.ptr(1);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
min_max_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf);
|
2010-11-25 17:57:02 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
T minval_, maxval_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
2010-11-25 18:19:06 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template void min_max_caller<unsigned char>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_caller<char>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-25 18:19:06 +08:00
|
|
|
template void min_max_caller<unsigned short>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_caller<short>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-25 18:19:06 +08:00
|
|
|
template void min_max_caller<int>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_caller<float>(const DevMem2D, double*,double*, PtrStep);
|
2010-11-25 18:19:06 +08:00
|
|
|
template void min_max_caller<double>(const DevMem2D, double*, double*, PtrStep);
|
|
|
|
|
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
template <int nthreads, typename T>
|
2010-11-29 18:29:21 +08:00
|
|
|
__global__ void min_max_pass2_kernel(T* minval, T* maxval, int size)
|
2010-11-25 18:19:06 +08:00
|
|
|
{
|
2010-11-29 16:04:39 +08:00
|
|
|
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
|
|
|
__shared__ best_type sminval[nthreads];
|
|
|
|
__shared__ best_type smaxval[nthreads];
|
|
|
|
|
|
|
|
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
|
|
|
|
|
|
|
|
sminval[tid] = minval[idx];
|
|
|
|
smaxval[tid] = maxval[idx];
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
find_min_max_in_smem<nthreads, best_type>(sminval, smaxval, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[0] = (T)sminval[0];
|
|
|
|
maxval[0] = (T)smaxval[0];
|
2010-11-25 18:19:06 +08:00
|
|
|
}
|
2010-11-25 17:57:02 +08:00
|
|
|
}
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
template <typename T>
|
2010-11-29 18:29:21 +08:00
|
|
|
void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf)
|
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-29 18:29:21 +08:00
|
|
|
|
|
|
|
T* minval_buf = (T*)buf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)buf.ptr(1);
|
|
|
|
|
|
|
|
min_max_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf);
|
|
|
|
min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y);
|
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
T minval_, maxval_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
|
|
|
}
|
|
|
|
|
|
|
|
template void min_max_mask_multipass_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_mask_multipass_caller<char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_mask_multipass_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_mask_multipass_caller<short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_mask_multipass_caller<int>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
template void min_max_mask_multipass_caller<float>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf)
|
2010-11-25 17:57:02 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-25 18:19:06 +08:00
|
|
|
T* minval_buf = (T*)buf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)buf.ptr(1);
|
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
min_max_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf);
|
|
|
|
min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y);
|
2010-11-24 16:55:52 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
T minval_, maxval_;
|
2010-11-25 17:57:02 +08:00
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
2010-11-24 16:55:52 +08:00
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
|
|
|
}
|
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_multipass_caller<unsigned char>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_multipass_caller<char>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_multipass_caller<unsigned short>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_multipass_caller<short>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_multipass_caller<int>(const DevMem2D, double*, double*, PtrStep);
|
|
|
|
template void min_max_multipass_caller<float>(const DevMem2D, double*, double*, PtrStep);
|
2010-11-25 17:57:02 +08:00
|
|
|
|
|
|
|
} // namespace minmax
|
|
|
|
|
2010-11-27 01:12:48 +08:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// minMaxLoc
|
2010-11-25 18:19:06 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
namespace minmaxloc {
|
2010-11-24 16:55:52 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
__constant__ int ctwidth;
|
|
|
|
__constant__ int ctheight;
|
|
|
|
|
|
|
|
// Global counter of blocks finished its work
|
2010-11-29 16:09:54 +08:00
|
|
|
__device__ unsigned int blocks_finished = 0;
|
2010-11-26 15:50:11 +08:00
|
|
|
|
|
|
|
|
|
|
|
// Estimates good thread configuration
|
|
|
|
// - threads variable satisfies to threads.x * threads.y == 256
|
2010-11-30 20:27:21 +08:00
|
|
|
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
|
2010-11-24 19:40:14 +08:00
|
|
|
{
|
2010-11-30 20:27:21 +08:00
|
|
|
threads = dim3(32, 8);
|
|
|
|
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
|
2010-12-10 21:36:00 +08:00
|
|
|
grid.x = min(grid.x, threads.x);
|
|
|
|
grid.y = min(grid.y, threads.y);
|
2010-11-26 15:50:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns required buffer sizes
|
2010-11-30 20:27:21 +08:00
|
|
|
void get_buf_size_required(int cols, int rows, int elem_size, int& b1cols,
|
|
|
|
int& b1rows, int& b2cols, int& b2rows)
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(cols, rows, threads, grid);
|
2010-11-26 15:50:11 +08:00
|
|
|
b1cols = grid.x * grid.y * elem_size; // For values
|
|
|
|
b1rows = 2;
|
|
|
|
b2cols = grid.x * grid.y * sizeof(int); // For locations
|
|
|
|
b2rows = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Estimates device constants which are used in the kernels using specified thread configuration
|
2010-11-30 20:27:21 +08:00
|
|
|
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
|
|
|
int twidth = divUp(divUp(cols, grid.x), threads.x);
|
|
|
|
int theight = divUp(divUp(rows, grid.y), threads.y);
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth)));
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight)));
|
|
|
|
}
|
|
|
|
|
2010-11-24 19:40:14 +08:00
|
|
|
|
|
|
|
template <typename T>
|
2010-11-26 15:50:11 +08:00
|
|
|
__device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval,
|
|
|
|
volatile unsigned int* minloc, volatile unsigned int* maxloc)
|
2010-11-24 19:40:14 +08:00
|
|
|
{
|
2010-11-26 15:50:11 +08:00
|
|
|
T val = minval[tid + offset];
|
|
|
|
if (val < minval[tid])
|
2010-11-24 19:40:14 +08:00
|
|
|
{
|
2010-11-26 15:50:11 +08:00
|
|
|
minval[tid] = val;
|
|
|
|
minloc[tid] = minloc[tid + offset];
|
2010-11-24 19:40:14 +08:00
|
|
|
}
|
2010-11-26 15:50:11 +08:00
|
|
|
val = maxval[tid + offset];
|
|
|
|
if (val > maxval[tid])
|
|
|
|
{
|
|
|
|
maxval[tid] = val;
|
|
|
|
maxloc[tid] = maxloc[tid + offset];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
template <int size, typename T>
|
|
|
|
__device__ void find_min_max_loc_in_smem(volatile T* minval, volatile T* maxval, volatile unsigned int* minloc,
|
|
|
|
volatile unsigned int* maxloc, const unsigned int tid)
|
|
|
|
{
|
|
|
|
if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval, minloc, maxloc); } __syncthreads(); }
|
|
|
|
if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval, minloc, maxloc); } __syncthreads(); }
|
|
|
|
if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval, minloc, maxloc); } __syncthreads(); }
|
|
|
|
|
|
|
|
if (tid < 32)
|
|
|
|
{
|
|
|
|
if (size >= 64) merge(tid, 32, minval, maxval, minloc, maxloc);
|
|
|
|
if (size >= 32) merge(tid, 16, minval, maxval, minloc, maxloc);
|
|
|
|
if (size >= 16) merge(tid, 8, minval, maxval, minloc, maxloc);
|
|
|
|
if (size >= 8) merge(tid, 4, minval, maxval, minloc, maxloc);
|
|
|
|
if (size >= 4) merge(tid, 2, minval, maxval, minloc, maxloc);
|
|
|
|
if (size >= 2) merge(tid, 1, minval, maxval, minloc, maxloc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-11-29 21:56:43 +08:00
|
|
|
template <int nthreads, typename T, typename Mask>
|
|
|
|
__global__ void min_max_loc_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval,
|
2010-11-26 15:50:11 +08:00
|
|
|
unsigned int* minloc, unsigned int* maxloc)
|
2010-11-24 19:40:14 +08:00
|
|
|
{
|
|
|
|
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
2010-11-26 15:50:11 +08:00
|
|
|
__shared__ best_type sminval[nthreads];
|
|
|
|
__shared__ best_type smaxval[nthreads];
|
|
|
|
__shared__ unsigned int sminloc[nthreads];
|
|
|
|
__shared__ unsigned int smaxloc[nthreads];
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
2010-11-24 19:40:14 +08:00
|
|
|
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
2010-11-29 21:21:43 +08:00
|
|
|
T mymin = numeric_limits_gpu<T>::max();
|
|
|
|
T mymax = numeric_limits_gpu<T>::is_signed ? -numeric_limits_gpu<T>::max() : numeric_limits_gpu<T>::min();
|
|
|
|
unsigned int myminloc = 0;
|
|
|
|
unsigned int mymaxloc = 0;
|
2010-11-29 18:44:25 +08:00
|
|
|
unsigned int y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
|
|
|
|
unsigned int x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
|
|
|
|
|
|
|
|
for (unsigned int y = y0; y < y_end; y += blockDim.y)
|
2010-11-24 19:40:14 +08:00
|
|
|
{
|
2010-11-29 18:44:25 +08:00
|
|
|
const T* ptr = (const T*)src.ptr(y);
|
|
|
|
for (unsigned int x = x0; x < x_end; x += blockDim.x)
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
2010-11-29 21:56:43 +08:00
|
|
|
if (mask(y, x))
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
2010-11-29 21:56:43 +08:00
|
|
|
T val = ptr[x];
|
|
|
|
if (val <= mymin) { mymin = val; myminloc = y * src.cols + x; }
|
|
|
|
if (val >= mymax) { mymax = val; mymaxloc = y * src.cols + x; }
|
2010-11-26 15:50:11 +08:00
|
|
|
}
|
|
|
|
}
|
2010-11-24 19:40:14 +08:00
|
|
|
}
|
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
sminval[tid] = mymin;
|
|
|
|
smaxval[tid] = mymax;
|
|
|
|
sminloc[tid] = myminloc;
|
|
|
|
smaxloc[tid] = mymaxloc;
|
2010-11-24 19:40:14 +08:00
|
|
|
__syncthreads();
|
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
find_min_max_loc_in_smem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
__shared__ bool is_last;
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
|
2010-11-26 15:50:11 +08:00
|
|
|
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
|
|
|
|
minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0];
|
|
|
|
maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0];
|
2010-11-29 16:04:39 +08:00
|
|
|
__threadfence();
|
2010-11-26 15:50:11 +08:00
|
|
|
|
2010-11-29 16:04:39 +08:00
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = ticket == gridDim.x * gridDim.y - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
|
|
|
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
|
|
|
|
|
|
|
|
sminval[tid] = minval[idx];
|
|
|
|
smaxval[tid] = maxval[idx];
|
|
|
|
sminloc[tid] = minloc[idx];
|
|
|
|
smaxloc[tid] = maxloc[idx];
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
find_min_max_loc_in_smem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
2010-11-29 16:04:39 +08:00
|
|
|
minval[0] = (T)sminval[0];
|
|
|
|
maxval[0] = (T)smaxval[0];
|
|
|
|
minloc[0] = sminloc[0];
|
|
|
|
maxloc[0] = smaxloc[0];
|
2010-11-29 16:09:54 +08:00
|
|
|
blocks_finished = 0;
|
2010-11-26 15:50:11 +08:00
|
|
|
}
|
2010-11-29 16:04:39 +08:00
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
|
|
|
|
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
|
|
|
|
minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0];
|
|
|
|
maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0];
|
2010-11-24 19:40:14 +08:00
|
|
|
}
|
2010-11-26 15:50:11 +08:00
|
|
|
#endif
|
2010-11-24 19:40:14 +08:00
|
|
|
}
|
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
|
2010-11-29 21:56:43 +08:00
|
|
|
template <typename T>
|
|
|
|
void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
|
|
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
|
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-29 21:56:43 +08:00
|
|
|
|
|
|
|
T* minval_buf = (T*)valbuf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)valbuf.ptr(1);
|
|
|
|
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
|
|
|
|
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
|
|
|
|
|
|
|
|
min_max_loc_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
|
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
T minval_, maxval_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
|
|
|
|
|
|
|
unsigned int minloc_, maxloc_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
|
|
|
|
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
|
|
|
|
}
|
|
|
|
|
|
|
|
template void min_max_loc_mask_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_caller<char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_caller<short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_caller<int>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_caller<float>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_caller<double>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
|
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
template <typename T>
|
|
|
|
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval,
|
|
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
|
2010-11-24 19:40:14 +08:00
|
|
|
{
|
2010-11-26 15:50:11 +08:00
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
T* minval_buf = (T*)valbuf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)valbuf.ptr(1);
|
|
|
|
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
|
|
|
|
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-29 21:56:43 +08:00
|
|
|
min_max_loc_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
|
2010-11-26 15:50:11 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
T minval_, maxval_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
unsigned int minloc_, maxloc_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
|
|
|
|
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
|
|
|
|
}
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
template void min_max_loc_caller<unsigned char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_loc_caller<char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-26 15:50:11 +08:00
|
|
|
template void min_max_loc_caller<unsigned short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_loc_caller<short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-26 15:50:11 +08:00
|
|
|
template void min_max_loc_caller<int>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_caller<float>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_caller<double>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
|
|
|
|
// This kernel will be used only when compute capability is 1.0
|
2010-11-29 16:04:39 +08:00
|
|
|
template <int nthreads, typename T>
|
2010-11-29 18:29:21 +08:00
|
|
|
__global__ void min_max_loc_pass2_kernel(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int size)
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
2010-11-29 16:04:39 +08:00
|
|
|
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
|
|
|
__shared__ best_type sminval[nthreads];
|
|
|
|
__shared__ best_type smaxval[nthreads];
|
|
|
|
__shared__ unsigned int sminloc[nthreads];
|
|
|
|
__shared__ unsigned int smaxloc[nthreads];
|
|
|
|
|
|
|
|
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
|
|
|
|
|
|
|
|
sminval[tid] = minval[idx];
|
|
|
|
smaxval[tid] = maxval[idx];
|
|
|
|
sminloc[tid] = minloc[idx];
|
|
|
|
smaxloc[tid] = maxloc[idx];
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
find_min_max_loc_in_smem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
minval[0] = (T)sminval[0];
|
|
|
|
maxval[0] = (T)smaxval[0];
|
|
|
|
minloc[0] = sminloc[0];
|
|
|
|
maxloc[0] = smaxloc[0];
|
2010-11-24 19:40:14 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
|
2010-11-29 21:56:43 +08:00
|
|
|
template <typename T>
|
|
|
|
void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
|
|
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
|
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-29 21:56:43 +08:00
|
|
|
|
|
|
|
T* minval_buf = (T*)valbuf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)valbuf.ptr(1);
|
|
|
|
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
|
|
|
|
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
|
|
|
|
|
|
|
|
min_max_loc_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
|
|
|
|
min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y);
|
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
T minval_, maxval_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
|
|
|
|
|
|
|
unsigned int minloc_, maxloc_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
|
|
|
|
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
|
|
|
|
}
|
|
|
|
|
|
|
|
template void min_max_loc_mask_multipass_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_multipass_caller<char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_multipass_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_multipass_caller<short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_multipass_caller<int>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_mask_multipass_caller<float>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
|
|
|
|
|
2010-11-24 19:40:14 +08:00
|
|
|
template <typename T>
|
2010-11-29 18:29:21 +08:00
|
|
|
void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval,
|
2010-11-29 21:56:43 +08:00
|
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
|
2010-11-26 15:50:11 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
T* minval_buf = (T*)valbuf.ptr(0);
|
|
|
|
T* maxval_buf = (T*)valbuf.ptr(1);
|
|
|
|
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
|
|
|
|
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-29 21:56:43 +08:00
|
|
|
min_max_loc_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
|
2010-11-29 18:29:21 +08:00
|
|
|
min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y);
|
2010-11-26 15:50:11 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
2010-11-24 19:40:14 +08:00
|
|
|
|
|
|
|
T minval_, maxval_;
|
2010-11-26 15:50:11 +08:00
|
|
|
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
|
2010-11-24 19:40:14 +08:00
|
|
|
*minval = minval_;
|
|
|
|
*maxval = maxval_;
|
|
|
|
|
2010-11-26 15:50:11 +08:00
|
|
|
unsigned int minloc_, maxloc_;
|
|
|
|
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
|
|
|
|
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
|
|
|
|
}
|
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_loc_multipass_caller<unsigned char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_loc_multipass_caller<char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_loc_multipass_caller<unsigned short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template void min_max_loc_multipass_caller<short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template void min_max_loc_multipass_caller<int>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
template void min_max_loc_multipass_caller<float>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
2010-11-24 19:40:14 +08:00
|
|
|
|
2010-11-25 17:57:02 +08:00
|
|
|
} // namespace minmaxloc
|
|
|
|
|
2010-11-27 01:12:48 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// countNonZero
|
|
|
|
|
|
|
|
namespace countnonzero
|
|
|
|
{
|
|
|
|
|
|
|
|
__constant__ int ctwidth;
|
|
|
|
__constant__ int ctheight;
|
|
|
|
|
2010-11-29 16:09:54 +08:00
|
|
|
__device__ unsigned int blocks_finished = 0;
|
2010-11-27 01:12:48 +08:00
|
|
|
|
2010-11-30 20:27:21 +08:00
|
|
|
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
|
2010-11-27 01:12:48 +08:00
|
|
|
{
|
2010-11-30 20:27:21 +08:00
|
|
|
threads = dim3(32, 8);
|
|
|
|
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
|
2010-12-10 21:36:00 +08:00
|
|
|
grid.x = min(grid.x, threads.x);
|
|
|
|
grid.y = min(grid.y, threads.y);
|
2010-11-27 01:12:48 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-11-30 20:27:21 +08:00
|
|
|
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows)
|
2010-11-27 01:12:48 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(cols, rows, threads, grid);
|
|
|
|
bufcols = grid.x * grid.y * sizeof(int);
|
|
|
|
bufrows = 1;
|
2010-11-27 01:12:48 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-11-30 20:27:21 +08:00
|
|
|
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
|
2010-11-27 01:12:48 +08:00
|
|
|
{
|
|
|
|
int twidth = divUp(divUp(cols, grid.x), threads.x);
|
|
|
|
int theight = divUp(divUp(rows, grid.y), threads.y);
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth)));
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <int nthreads, typename T>
|
|
|
|
__global__ void count_non_zero_kernel(const DevMem2D src, volatile unsigned int* count)
|
|
|
|
{
|
|
|
|
__shared__ unsigned int scount[nthreads];
|
|
|
|
|
|
|
|
unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
|
|
|
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
unsigned int cnt = 0;
|
|
|
|
for (unsigned int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
|
|
|
|
{
|
|
|
|
const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y);
|
|
|
|
for (unsigned int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
|
|
|
|
cnt += ptr[x0 + x * blockDim.x] != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
scount[tid] = cnt;
|
|
|
|
__syncthreads();
|
|
|
|
|
2010-12-10 18:23:32 +08:00
|
|
|
sum_in_smem<nthreads, unsigned int>(scount, tid);
|
2010-11-27 01:12:48 +08:00
|
|
|
|
2010-11-29 15:18:11 +08:00
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
2010-11-27 01:12:48 +08:00
|
|
|
__shared__ bool is_last;
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0];
|
|
|
|
__threadfence();
|
|
|
|
|
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = ticket == gridDim.x * gridDim.y - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
2010-11-29 16:04:39 +08:00
|
|
|
scount[tid] = tid < gridDim.x * gridDim.y ? count[tid] : 0;
|
|
|
|
__syncthreads();
|
|
|
|
|
2010-12-10 18:23:32 +08:00
|
|
|
sum_in_smem<nthreads, unsigned int>(scount, tid);
|
2010-11-29 16:04:39 +08:00
|
|
|
|
2010-11-29 16:09:54 +08:00
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
count[0] = scount[0];
|
|
|
|
blocks_finished = 0;
|
|
|
|
}
|
2010-11-27 01:12:48 +08:00
|
|
|
}
|
2010-11-29 15:18:11 +08:00
|
|
|
#else
|
|
|
|
if (tid == 0) count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0];
|
|
|
|
#endif
|
2010-11-27 01:12:48 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
int count_non_zero_caller(const DevMem2D src, PtrStep buf)
|
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-27 01:12:48 +08:00
|
|
|
|
|
|
|
unsigned int* count_buf = (unsigned int*)buf.ptr(0);
|
|
|
|
|
|
|
|
count_non_zero_kernel<256, T><<<grid, threads>>>(src, count_buf);
|
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
unsigned int count;
|
|
|
|
cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
template int count_non_zero_caller<unsigned char>(const DevMem2D, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template int count_non_zero_caller<char>(const DevMem2D, PtrStep);
|
2010-11-27 01:12:48 +08:00
|
|
|
template int count_non_zero_caller<unsigned short>(const DevMem2D, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template int count_non_zero_caller<short>(const DevMem2D, PtrStep);
|
2010-11-27 01:12:48 +08:00
|
|
|
template int count_non_zero_caller<int>(const DevMem2D, PtrStep);
|
|
|
|
template int count_non_zero_caller<float>(const DevMem2D, PtrStep);
|
|
|
|
template int count_non_zero_caller<double>(const DevMem2D, PtrStep);
|
|
|
|
|
2010-11-29 15:18:11 +08:00
|
|
|
|
|
|
|
template <int nthreads, typename T>
|
2010-11-29 18:29:21 +08:00
|
|
|
__global__ void count_non_zero_pass2_kernel(unsigned int* count, int size)
|
2010-11-29 15:18:11 +08:00
|
|
|
{
|
|
|
|
__shared__ unsigned int scount[nthreads];
|
|
|
|
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
scount[tid] = tid < size ? count[tid] : 0;
|
2010-12-10 21:36:00 +08:00
|
|
|
__syncthreads();
|
2010-11-29 15:18:11 +08:00
|
|
|
|
2010-12-10 21:36:00 +08:00
|
|
|
sum_in_smem<nthreads, unsigned int>(scount, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
2010-11-29 16:09:54 +08:00
|
|
|
count[0] = scount[0];
|
2010-11-29 15:18:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
2010-11-29 18:29:21 +08:00
|
|
|
int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf)
|
2010-11-29 15:18:11 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
2010-11-30 20:27:21 +08:00
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
2010-11-29 15:18:11 +08:00
|
|
|
|
|
|
|
unsigned int* count_buf = (unsigned int*)buf.ptr(0);
|
|
|
|
|
|
|
|
count_non_zero_kernel<256, T><<<grid, threads>>>(src, count_buf);
|
2010-11-29 18:29:21 +08:00
|
|
|
count_non_zero_pass2_kernel<256, T><<<1, 256>>>(count_buf, grid.x * grid.y);
|
2010-11-29 15:18:11 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
|
|
|
unsigned int count;
|
|
|
|
cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
2010-11-29 18:29:21 +08:00
|
|
|
template int count_non_zero_multipass_caller<unsigned char>(const DevMem2D, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template int count_non_zero_multipass_caller<char>(const DevMem2D, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template int count_non_zero_multipass_caller<unsigned short>(const DevMem2D, PtrStep);
|
2010-11-29 21:21:43 +08:00
|
|
|
template int count_non_zero_multipass_caller<short>(const DevMem2D, PtrStep);
|
2010-11-29 18:29:21 +08:00
|
|
|
template int count_non_zero_multipass_caller<int>(const DevMem2D, PtrStep);
|
|
|
|
template int count_non_zero_multipass_caller<float>(const DevMem2D, PtrStep);
|
2010-11-29 15:18:11 +08:00
|
|
|
|
2010-11-27 01:12:48 +08:00
|
|
|
} // namespace countnonzero
|
|
|
|
|
2010-12-01 15:00:50 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// transpose
|
|
|
|
|
2010-12-08 15:23:59 +08:00
|
|
|
__global__ void transpose(const DevMem2Di src, PtrStepi dst)
|
2010-12-01 15:00:50 +08:00
|
|
|
{
|
2010-12-08 15:23:59 +08:00
|
|
|
__shared__ int s_mem[16 * 17];
|
2010-12-01 15:00:50 +08:00
|
|
|
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
int smem_idx = threadIdx.y * blockDim.x + threadIdx.x + threadIdx.y;
|
|
|
|
|
|
|
|
if (y < src.rows && x < src.cols)
|
|
|
|
{
|
|
|
|
s_mem[smem_idx] = src.ptr(y)[x];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
smem_idx = threadIdx.x * blockDim.x + threadIdx.y + threadIdx.x;
|
|
|
|
|
|
|
|
x = blockIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
y = blockIdx.x * blockDim.y + threadIdx.y;
|
|
|
|
|
|
|
|
if (y < src.cols && x < src.rows)
|
|
|
|
{
|
|
|
|
dst.ptr(y)[x] = s_mem[smem_idx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-12-08 15:23:59 +08:00
|
|
|
void transpose_gpu(const DevMem2Di& src, const DevMem2Di& dst)
|
2010-12-01 15:00:50 +08:00
|
|
|
{
|
|
|
|
dim3 threads(16, 16, 1);
|
|
|
|
dim3 grid(divUp(src.cols, 16), divUp(src.rows, 16), 1);
|
|
|
|
|
2010-12-08 15:23:59 +08:00
|
|
|
transpose<<<grid, threads>>>(src, dst);
|
2010-12-01 15:00:50 +08:00
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
2010-12-06 16:10:11 +08:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// min/max
|
|
|
|
|
|
|
|
struct MinOp
|
|
|
|
{
|
|
|
|
template <typename T>
|
|
|
|
__device__ T operator()(T a, T b)
|
|
|
|
{
|
|
|
|
return min(a, b);
|
|
|
|
}
|
|
|
|
__device__ float operator()(float a, float b)
|
|
|
|
{
|
|
|
|
return fmin(a, b);
|
|
|
|
}
|
|
|
|
__device__ double operator()(double a, double b)
|
|
|
|
{
|
|
|
|
return fmin(a, b);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct MaxOp
|
|
|
|
{
|
|
|
|
template <typename T>
|
|
|
|
__device__ T operator()(T a, T b)
|
|
|
|
{
|
|
|
|
return max(a, b);
|
|
|
|
}
|
|
|
|
__device__ float operator()(float a, float b)
|
|
|
|
{
|
|
|
|
return fmax(a, b);
|
|
|
|
}
|
|
|
|
__device__ double operator()(double a, double b)
|
|
|
|
{
|
|
|
|
return fmax(a, b);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ScalarMinOp
|
|
|
|
{
|
|
|
|
double s;
|
|
|
|
|
|
|
|
explicit ScalarMinOp(double s_) : s(s_) {}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
__device__ T operator()(T a)
|
|
|
|
{
|
|
|
|
return saturate_cast<T>(fmin((double)a, s));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ScalarMaxOp
|
|
|
|
{
|
|
|
|
double s;
|
|
|
|
|
|
|
|
explicit ScalarMaxOp(double s_) : s(s_) {}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
__device__ T operator()(T a)
|
|
|
|
{
|
|
|
|
return saturate_cast<T>(fmax((double)a, s));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
MinOp op;
|
|
|
|
transform(src1, src2, dst, op, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void min_gpu<uchar >(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<char >(const DevMem2D_<char>& src1, const DevMem2D_<char>& src2, const DevMem2D_<char>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
MaxOp op;
|
|
|
|
transform(src1, src2, dst, op, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void max_gpu<uchar >(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<char >(const DevMem2D_<char>& src1, const DevMem2D_<char>& src2, const DevMem2D_<char>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void min_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
ScalarMinOp op(src2);
|
|
|
|
transform(src1, dst, op, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void min_gpu<uchar >(const DevMem2D& src1, double src2, const DevMem2D& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<char >(const DevMem2D_<char>& src1, double src2, const DevMem2D_<char>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, double src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<short >(const DevMem2D_<short>& src1, double src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<int >(const DevMem2D_<int>& src1, double src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<float >(const DevMem2D_<float>& src1, double src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
|
|
|
template void min_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void max_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
ScalarMaxOp op(src2);
|
|
|
|
transform(src1, dst, op, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void max_gpu<uchar >(const DevMem2D& src1, double src2, const DevMem2D& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<char >(const DevMem2D_<char>& src1, double src2, const DevMem2D_<char>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, double src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<short >(const DevMem2D_<short>& src1, double src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<int >(const DevMem2D_<int>& src1, double src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<float >(const DevMem2D_<float>& src1, double src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
|
|
|
template void max_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
2010-12-10 21:36:00 +08:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Sum
|
|
|
|
|
|
|
|
namespace sum
|
|
|
|
{
|
|
|
|
|
2010-12-13 20:00:58 +08:00
|
|
|
template <typename T> struct SumType {};
|
|
|
|
template <> struct SumType<unsigned char> { typedef unsigned int R; };
|
|
|
|
template <> struct SumType<char> { typedef int R; };
|
|
|
|
template <> struct SumType<unsigned short> { typedef unsigned int R; };
|
|
|
|
template <> struct SumType<short> { typedef int R; };
|
|
|
|
template <> struct SumType<int> { typedef int R; };
|
|
|
|
template <> struct SumType<float> { typedef float R; };
|
|
|
|
template <> struct SumType<double> { typedef double R; };
|
|
|
|
|
2010-12-13 22:34:02 +08:00
|
|
|
template <typename R>
|
|
|
|
struct IdentityOp { static __device__ R call(R x) { return x; } };
|
|
|
|
|
|
|
|
template <typename R>
|
|
|
|
struct SqrOp { static __device__ R call(R x) { return x * x; } };
|
|
|
|
|
2010-12-10 21:36:00 +08:00
|
|
|
__constant__ int ctwidth;
|
|
|
|
__constant__ int ctheight;
|
|
|
|
__device__ unsigned int blocks_finished = 0;
|
|
|
|
|
|
|
|
const int threads_x = 32;
|
|
|
|
const int threads_y = 8;
|
|
|
|
|
|
|
|
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
|
|
|
|
{
|
|
|
|
threads = dim3(threads_x, threads_y);
|
|
|
|
grid = dim3(divUp(cols, threads.x * threads.y),
|
|
|
|
divUp(rows, threads.y * threads.x));
|
|
|
|
grid.x = min(grid.x, threads.x);
|
|
|
|
grid.y = min(grid.y, threads.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
void get_buf_size_required(int cols, int rows, int cn, int& bufcols, int& bufrows)
|
2010-12-10 21:36:00 +08:00
|
|
|
{
|
|
|
|
dim3 threads, grid;
|
|
|
|
estimate_thread_cfg(cols, rows, threads, grid);
|
2010-12-15 23:12:32 +08:00
|
|
|
bufcols = grid.x * grid.y * sizeof(double) * cn;
|
2010-12-10 21:36:00 +08:00
|
|
|
bufrows = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
|
|
|
|
{
|
|
|
|
int twidth = divUp(divUp(cols, grid.x), threads.x);
|
|
|
|
int theight = divUp(divUp(rows, grid.y), threads.y);
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth)));
|
|
|
|
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight)));
|
|
|
|
}
|
|
|
|
|
2010-12-13 22:34:02 +08:00
|
|
|
template <typename T, typename R, typename Op, int nthreads>
|
2010-12-15 23:12:32 +08:00
|
|
|
__global__ void sum_kernel(const DevMem2D src, R* result)
|
2010-12-10 21:36:00 +08:00
|
|
|
{
|
2010-12-13 20:00:58 +08:00
|
|
|
__shared__ R smem[nthreads];
|
2010-12-10 21:36:00 +08:00
|
|
|
|
|
|
|
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
|
|
|
|
|
2010-12-13 20:00:58 +08:00
|
|
|
R sum = 0;
|
2010-12-10 21:36:00 +08:00
|
|
|
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
|
|
|
|
{
|
2010-12-15 23:12:32 +08:00
|
|
|
const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y);
|
2010-12-10 21:36:00 +08:00
|
|
|
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
|
2010-12-13 22:34:02 +08:00
|
|
|
sum += Op::call(ptr[x0 + x * blockDim.x]);
|
2010-12-10 21:36:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
smem[tid] = sum;
|
|
|
|
__syncthreads();
|
|
|
|
|
2010-12-13 20:00:58 +08:00
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
2010-12-10 21:36:00 +08:00
|
|
|
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
__shared__ bool is_last;
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
result[bid] = smem[0];
|
|
|
|
__threadfence();
|
|
|
|
|
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
|
|
|
smem[tid] = tid < gridDim.x * gridDim.y ? result[tid] : 0;
|
|
|
|
__syncthreads();
|
|
|
|
|
2010-12-13 20:00:58 +08:00
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
2010-12-10 21:36:00 +08:00
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
result[0] = smem[0];
|
|
|
|
blocks_finished = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (tid == 0) result[bid] = smem[0];
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-12-13 20:00:58 +08:00
|
|
|
template <typename T, typename R, int nthreads>
|
|
|
|
__global__ void sum_pass2_kernel(R* result, int size)
|
2010-12-10 21:36:00 +08:00
|
|
|
{
|
2010-12-13 20:00:58 +08:00
|
|
|
__shared__ R smem[nthreads];
|
2010-12-10 21:36:00 +08:00
|
|
|
int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
smem[tid] = tid < size ? result[tid] : 0;
|
2010-12-13 20:00:58 +08:00
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
2010-12-10 21:36:00 +08:00
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
result[0] = smem[0];
|
|
|
|
}
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
|
|
|
|
template <typename T, typename R, typename Op, int nthreads>
|
|
|
|
__global__ void sum_kernel_C2(const DevMem2D src, typename TypeVec<R, 2>::vec_t* result)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<T, 2>::vec_t SrcType;
|
|
|
|
typedef typename TypeVec<R, 2>::vec_t DstType;
|
|
|
|
|
|
|
|
__shared__ R smem[nthreads * 2];
|
|
|
|
|
|
|
|
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
|
|
|
|
|
|
|
|
SrcType val;
|
|
|
|
DstType sum = VecTraits<DstType>::all(0);
|
|
|
|
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
|
|
|
|
{
|
|
|
|
const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y);
|
|
|
|
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
|
|
|
|
{
|
|
|
|
val = ptr[x0 + x * blockDim.x];
|
|
|
|
sum = sum + VecTraits<DstType>::make(Op::call(val.x), Op::call(val.y));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
smem[tid] = sum.x;
|
|
|
|
smem[tid + nthreads] = sum.y;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
__shared__ bool is_last;
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
DstType res;
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
result[bid] = res;
|
|
|
|
__threadfence();
|
|
|
|
|
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
|
|
|
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
|
|
|
|
smem[tid] = res.x;
|
|
|
|
smem[tid + nthreads] = res.y;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
result[0] = res;
|
|
|
|
blocks_finished = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
DstType res;
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
result[bid] = res;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, typename R, int nthreads>
|
|
|
|
__global__ void sum_pass2_kernel_C2(typename TypeVec<R, 2>::vec_t* result, int size)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<R, 2>::vec_t DstType;
|
|
|
|
|
|
|
|
__shared__ R smem[nthreads * 2];
|
|
|
|
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
|
|
|
|
smem[tid] = res.x;
|
|
|
|
smem[tid + nthreads] = res.y;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
result[0] = res;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-12-15 23:28:35 +08:00
|
|
|
|
|
|
|
template <typename T, typename R, typename Op, int nthreads>
|
|
|
|
__global__ void sum_kernel_C3(const DevMem2D src, typename TypeVec<R, 3>::vec_t* result)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<T, 3>::vec_t SrcType;
|
|
|
|
typedef typename TypeVec<R, 3>::vec_t DstType;
|
|
|
|
|
|
|
|
__shared__ R smem[nthreads * 3];
|
|
|
|
|
|
|
|
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
|
|
|
|
|
|
|
|
SrcType val;
|
|
|
|
DstType sum = VecTraits<DstType>::all(0);
|
|
|
|
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
|
|
|
|
{
|
|
|
|
const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y);
|
|
|
|
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
|
|
|
|
{
|
|
|
|
val = ptr[x0 + x * blockDim.x];
|
|
|
|
sum = sum + VecTraits<DstType>::make(Op::call(val.x), Op::call(val.y), Op::call(val.z));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
smem[tid] = sum.x;
|
|
|
|
smem[tid + nthreads] = sum.y;
|
|
|
|
smem[tid + 2 * nthreads] = sum.z;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
|
|
|
|
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
__shared__ bool is_last;
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
DstType res;
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
result[bid] = res;
|
|
|
|
__threadfence();
|
|
|
|
|
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
|
|
|
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
|
|
|
|
smem[tid] = res.x;
|
|
|
|
smem[tid + nthreads] = res.y;
|
|
|
|
smem[tid + 2 * nthreads] = res.z;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
result[0] = res;
|
|
|
|
blocks_finished = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
DstType res;
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
result[bid] = res;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, typename R, int nthreads>
|
|
|
|
__global__ void sum_pass2_kernel_C3(typename TypeVec<R, 3>::vec_t* result, int size)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<R, 3>::vec_t DstType;
|
|
|
|
|
|
|
|
__shared__ R smem[nthreads * 3];
|
|
|
|
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
|
|
|
|
smem[tid] = res.x;
|
|
|
|
smem[tid + nthreads] = res.y;
|
|
|
|
smem[tid + 2 * nthreads] = res.z;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
result[0] = res;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, typename R, typename Op, int nthreads>
|
|
|
|
__global__ void sum_kernel_C4(const DevMem2D src, typename TypeVec<R, 4>::vec_t* result)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<T, 4>::vec_t SrcType;
|
|
|
|
typedef typename TypeVec<R, 4>::vec_t DstType;
|
|
|
|
|
|
|
|
__shared__ R smem[nthreads * 4];
|
|
|
|
|
|
|
|
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
|
|
|
|
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
|
|
|
|
|
|
|
|
SrcType val;
|
|
|
|
DstType sum = VecTraits<DstType>::all(0);
|
|
|
|
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
|
|
|
|
{
|
|
|
|
const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y);
|
|
|
|
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
|
|
|
|
{
|
|
|
|
val = ptr[x0 + x * blockDim.x];
|
|
|
|
sum = sum + VecTraits<DstType>::make(Op::call(val.x), Op::call(val.y),
|
|
|
|
Op::call(val.z), Op::call(val.w));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
smem[tid] = sum.x;
|
|
|
|
smem[tid + nthreads] = sum.y;
|
|
|
|
smem[tid + 2 * nthreads] = sum.z;
|
|
|
|
smem[tid + 3 * nthreads] = sum.w;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 3 * nthreads, tid);
|
|
|
|
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
__shared__ bool is_last;
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
DstType res;
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
res.w = smem[3 * nthreads];
|
|
|
|
result[bid] = res;
|
|
|
|
__threadfence();
|
|
|
|
|
|
|
|
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
|
|
|
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (is_last)
|
|
|
|
{
|
|
|
|
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
|
|
|
|
smem[tid] = res.x;
|
|
|
|
smem[tid + nthreads] = res.y;
|
|
|
|
smem[tid + 2 * nthreads] = res.z;
|
|
|
|
smem[tid + 3 * nthreads] = res.w;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 3 * nthreads, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
res.w = smem[3 * nthreads];
|
|
|
|
result[0] = res;
|
|
|
|
blocks_finished = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
DstType res;
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
res.w = smem[3 * nthreads];
|
|
|
|
result[bid] = res;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, typename R, int nthreads>
|
|
|
|
__global__ void sum_pass2_kernel_C4(typename TypeVec<R, 4>::vec_t* result, int size)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<R, 4>::vec_t DstType;
|
|
|
|
|
|
|
|
__shared__ R smem[nthreads * 4];
|
|
|
|
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<DstType>::all(0);
|
|
|
|
smem[tid] = res.x;
|
|
|
|
smem[tid + nthreads] = res.y;
|
|
|
|
smem[tid + 2 * nthreads] = res.z;
|
|
|
|
smem[tid + 3 * nthreads] = res.z;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sum_in_smem<nthreads, R>(smem, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 2 * nthreads, tid);
|
|
|
|
sum_in_smem<nthreads, R>(smem + 3 * nthreads, tid);
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
res.x = smem[0];
|
|
|
|
res.y = smem[nthreads];
|
|
|
|
res.z = smem[2 * nthreads];
|
|
|
|
res.w = smem[3 * nthreads];
|
|
|
|
result[0] = res;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-12-10 22:02:41 +08:00
|
|
|
} // namespace sum
|
|
|
|
|
2010-12-10 21:36:00 +08:00
|
|
|
|
|
|
|
template <typename T>
|
2010-12-15 23:12:32 +08:00
|
|
|
void sum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn)
|
2010-12-10 21:36:00 +08:00
|
|
|
{
|
2010-12-10 22:02:41 +08:00
|
|
|
using namespace sum;
|
2010-12-13 20:00:58 +08:00
|
|
|
typedef typename SumType<T>::R R;
|
2010-12-10 22:02:41 +08:00
|
|
|
|
2010-12-10 21:36:00 +08:00
|
|
|
dim3 threads, grid;
|
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
switch (cn)
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
sum_kernel<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 1>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 1>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
|
|
|
case 2:
|
|
|
|
sum_kernel_C2<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 2>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel_C2<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 2>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
2010-12-15 23:28:35 +08:00
|
|
|
case 3:
|
|
|
|
sum_kernel_C3<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 3>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel_C3<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 3>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
|
|
|
case 4:
|
|
|
|
sum_kernel_C4<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 4>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel_C4<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 4>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
2010-12-15 23:12:32 +08:00
|
|
|
}
|
2010-12-10 21:36:00 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
R result[4] = {0, 0, 0, 0};
|
|
|
|
cudaSafeCall(cudaMemcpy(&result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
sum[0] = result[0];
|
|
|
|
sum[1] = result[1];
|
|
|
|
sum[2] = result[2];
|
|
|
|
sum[3] = result[3];
|
2010-12-10 21:36:00 +08:00
|
|
|
}
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
template void sum_multipass_caller<unsigned char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_multipass_caller<char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_multipass_caller<unsigned short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_multipass_caller<short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_multipass_caller<int>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_multipass_caller<float>(const DevMem2D, PtrStep, double*, int);
|
2010-12-10 21:36:00 +08:00
|
|
|
|
2010-12-10 22:02:41 +08:00
|
|
|
|
2010-12-13 22:34:02 +08:00
|
|
|
template <typename T>
|
2010-12-15 23:12:32 +08:00
|
|
|
void sum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn)
|
2010-12-13 22:34:02 +08:00
|
|
|
{
|
|
|
|
using namespace sum;
|
|
|
|
typedef typename SumType<T>::R R;
|
|
|
|
|
|
|
|
dim3 threads, grid;
|
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
switch (cn)
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
sum_kernel<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 1>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
sum_kernel_C2<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 2>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
2010-12-15 23:28:35 +08:00
|
|
|
case 3:
|
|
|
|
sum_kernel_C3<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 3>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
sum_kernel_C4<T, R, IdentityOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 4>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
2010-12-15 23:12:32 +08:00
|
|
|
}
|
2010-12-13 22:34:02 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
R result[4] = {0, 0, 0, 0};
|
|
|
|
cudaSafeCall(cudaMemcpy(&result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
sum[0] = result[0];
|
|
|
|
sum[1] = result[1];
|
|
|
|
sum[2] = result[2];
|
|
|
|
sum[3] = result[3];
|
2010-12-13 22:34:02 +08:00
|
|
|
}
|
|
|
|
|
2010-12-15 23:12:32 +08:00
|
|
|
template void sum_caller<unsigned char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_caller<char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_caller<unsigned short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_caller<short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_caller<int>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sum_caller<float>(const DevMem2D, PtrStep, double*, int);
|
2010-12-13 22:34:02 +08:00
|
|
|
|
|
|
|
|
2010-12-10 22:02:41 +08:00
|
|
|
template <typename T>
|
2010-12-16 00:32:56 +08:00
|
|
|
void sqsum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn)
|
2010-12-10 22:02:41 +08:00
|
|
|
{
|
|
|
|
using namespace sum;
|
2010-12-13 20:00:58 +08:00
|
|
|
typedef typename SumType<T>::R R;
|
2010-12-10 22:02:41 +08:00
|
|
|
|
|
|
|
dim3 threads, grid;
|
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
switch (cn)
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
sum_kernel<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 1>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 1>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
sum_kernel_C2<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 2>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel_C2<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 2>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
sum_kernel_C3<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 3>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel_C3<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 3>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
sum_kernel_C4<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 4>::vec_t*)buf.ptr(0));
|
|
|
|
sum_pass2_kernel_C4<T, R, threads_x * threads_y><<<1, threads_x * threads_y>>>(
|
|
|
|
(typename TypeVec<R, 4>::vec_t*)buf.ptr(0), grid.x * grid.y);
|
|
|
|
break;
|
|
|
|
}
|
2010-12-10 22:02:41 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
R result[4] = {0, 0, 0, 0};
|
|
|
|
cudaSafeCall(cudaMemcpy(result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
sum[0] = result[0];
|
|
|
|
sum[1] = result[1];
|
|
|
|
sum[2] = result[2];
|
|
|
|
sum[3] = result[3];
|
2010-12-10 22:02:41 +08:00
|
|
|
}
|
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
template void sqsum_multipass_caller<unsigned char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_multipass_caller<char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_multipass_caller<unsigned short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_multipass_caller<short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_multipass_caller<int>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_multipass_caller<float>(const DevMem2D, PtrStep, double*, int);
|
2010-12-13 22:34:02 +08:00
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
2010-12-16 00:32:56 +08:00
|
|
|
void sqsum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn)
|
2010-12-13 22:34:02 +08:00
|
|
|
{
|
|
|
|
using namespace sum;
|
|
|
|
typedef typename SumType<T>::R R;
|
|
|
|
|
|
|
|
dim3 threads, grid;
|
|
|
|
estimate_thread_cfg(src.cols, src.rows, threads, grid);
|
|
|
|
set_kernel_consts(src.cols, src.rows, threads, grid);
|
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
switch (cn)
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
sum_kernel<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 1>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
sum_kernel_C2<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 2>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
sum_kernel_C3<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 3>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
sum_kernel_C4<T, R, SqrOp<R>, threads_x * threads_y><<<grid, threads>>>(
|
|
|
|
src, (typename TypeVec<R, 4>::vec_t*)buf.ptr(0));
|
|
|
|
break;
|
|
|
|
}
|
2010-12-13 22:34:02 +08:00
|
|
|
cudaSafeCall(cudaThreadSynchronize());
|
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
R result[4] = {0, 0, 0, 0};
|
|
|
|
cudaSafeCall(cudaMemcpy(result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost));
|
2010-12-13 22:34:02 +08:00
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
sum[0] = result[0];
|
|
|
|
sum[1] = result[1];
|
|
|
|
sum[2] = result[2];
|
|
|
|
sum[3] = result[3];
|
|
|
|
}
|
|
|
|
|
|
|
|
template void sqsum_caller<unsigned char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_caller<char>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_caller<unsigned short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_caller<short>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_caller<int>(const DevMem2D, PtrStep, double*, int);
|
|
|
|
template void sqsum_caller<float>(const DevMem2D, PtrStep, double*, int);
|
2010-10-20 16:50:14 +08:00
|
|
|
}}}
|
2010-12-13 20:00:58 +08:00
|
|
|
|
2010-12-16 00:32:56 +08:00
|
|
|
|