Commit Graph

23918 Commits

Author SHA1 Message Date
Anatoliy Talamanov
b8b8c7c9e5
Merge pull request #23884 from TolyaTalamanov:at/fix-async-infer-ov-backend
G-API: Fix async inference for OpenVINO backend #23884

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-28 14:52:15 +03:00
Liutong HAN
d17507052e Rewrite SIMD code by using new Universal Intrinsic API. 2023-06-28 17:12:37 +08:00
Alexander Smorkalov
bf06bc92aa Merge branch '3.4' into merge-3.4 2023-06-23 20:12:58 +03:00
Yuantao Feng
aff420329c
Merge pull request #23853 from fengyuentau:disable_fp16_warning
dnn: disable warning when loading a fp16 model #23853

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-23 19:52:04 +03:00
Alexander Smorkalov
21d79abb1f
Merge pull request #23859 from TolyaTalamanov:at/ov-backend-core-wa
G-API: Apply ov::Core lifetime WA for OpenVINO Backend
2023-06-23 19:49:06 +03:00
Alexander Smorkalov
d9a5603fa3
Merge pull request #23860 from fengyuentau:fix_overflow_sigmoid_v3.4
dnn: fix overflow in sigmoid layer for 3.4
2023-06-23 19:47:42 +03:00
Alexander Smorkalov
ee97dd5211
Merge pull request #23806 from asmorkalov:as/usac_drop_mat_ptr
Get rid of unsafe raw pointers to Mat object in USAC
2023-06-23 16:23:03 +03:00
fengyuentau
29388f80a5 fix overflow 2023-06-23 21:22:21 +08:00
Alexander Panov
e7501b69ea
Merge pull request #23647 from AleksandrPanov:fix_charuco_board_detect
Add charuco board check #23647

Added charuco board checking to avoid detection of incorrect board.
Fixes #23517

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-23 16:16:22 +03:00
TolyaTalamanov
c0fda696f3 Apply ov::Core WA 2023-06-23 12:16:21 +00:00
Paul Kim (김형준)
3b264d5877
Add pthread.h Inclusion if HAVE_PTHREADS_PF is defined
Single-case tested with success on Windows 11 with MinGW-w64 Standalone GCC v13.1.0 while building OpenCV 4.7.0
2023-06-23 17:53:03 +09:00
Alexander Smorkalov
0866a135c6 Git rid of unsafe raw pointers to Mat object. 2023-06-23 09:20:24 +03:00
Alexander Smorkalov
2849a774e3
Merge pull request #23846 from asmorkalov:as/ffmpeg_update_4.x
FFmpeg/4.x: update FFmpeg wrapper 2023.6
2023-06-22 21:00:06 +03:00
Alexander Panov
affc69bf1f
Merge pull request #23848 from AleksandrPanov:fix_detectDiamonds_api
Fix detect diamonds api #23848

`detectDiamonds` cannot be called from python, reproducer:

```
import numpy as np
import cv2 as cv

detector = cv.aruco.CharucoDetector(
    cv.aruco.CharucoBoard(
        (3, 3), 200.0, 100.0,
        cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
    )
)
image = np.zeros((640, 480, 1), dtype=np.uint8)
res = detector.detectDiamonds(image)
print(res)
```

The error in `detectDiamonds` API fixed by replacing `InputOutputArrayOfArrays markerIds` with `InputOutputArray markerIds`.


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-22 17:30:44 +03:00
Dmitry Kurtaev
22b747eae2
Merge pull request #23702 from dkurt:py_rotated_rect
Python binding for RotatedRect #23702

### Pull Request Readiness Checklist

related: https://github.com/opencv/opencv/issues/23546#issuecomment-1562894602

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-22 15:09:53 +03:00
Alexander Smorkalov
426b088754 FFmpeg/4.x: update FFmpeg wrapper 2023.6 2023-06-22 13:58:58 +03:00
Anatoliy Talamanov
60848519b5
Merge pull request #23843 from TolyaTalamanov:at/fix-missing-opaque-kind-for-kernel
G-API: Fix incorrect OpaqueKind for Kernel outputs #23843

### Pull Request Readiness Checklist

#### Overview
The PR is going to fix several problems:
1. Major: `GKernel` doesn't hold `kind` for its outputs. Since `GModelBuilder` traverse graph from outputs to inputs once it reaches any output of the operation it will use its `kind` to create  `Data` meta for all operation outputs. Since it essential for `python` to know `GTypeInfo` (which is `shape` and `kind`) it will be confused.

Consider this operation:
```
 @cv.gapi.op('custom.square_mean', in_types=[cv.GArray.Int], out_types=[cv.GOpaque.Float, cv.GArray.Int])
    class GSquareMean:
        @staticmethod
        def outMeta(desc):
            return cv.empty_gopaque_desc(), cv.empty_array_desc()
```
Even though `GOpaque` is `Float`, corresponding metadata might have `Int` kind because it might be taken from `cv.GArray.Int`
so it will be a problem if one of the outputs of these operation is graph output because python will cast it to the wrong type based on `Data` meta.

2. Minor: Some of the OpenVINO `IR`'s doesn't any layout information for input. It's usually true only for `IRv10` but since `OpenVINO 2.0` need this information to correctly configure resize we need to put default layout if there no such assigned in `ov::Model`. 

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-22 12:46:25 +03:00
Alexander Smorkalov
61d48dd0f8
Merge pull request #23540 from cudawarped:add_CAP_PROP_CODEC_FOURCC
`VideoCapture`: change `CAP_PROP_FOURCC` to fix #22876
2023-06-22 12:21:59 +03:00
Alexander Alekhin
1656e7573e gapi: fix static build with openvino 2023-06-21 14:17:44 +00:00
Alexander Smorkalov
fc810434de
Merge pull request #23801 from VadimLevin:dev/vlevin/python-stubs-api-refinement
feat: manual refinement for Python API definition
2023-06-21 10:44:36 +03:00
Alexander Smorkalov
65b957a5b3
Merge pull request #23832 from asmorkalov:as/reshape_docs
Document parameters of multi-dimentional reshape
2023-06-21 09:04:17 +03:00
Alexander Smorkalov
9eaa7bd566 Document parameters of multi-dimentional reshape. 2023-06-20 21:54:49 +03:00
Vadim Levin
f20edba925 fix: conditionally define generic NumPy NDArray alias 2023-06-20 20:05:58 +03:00
Alexander Smorkalov
fe4f5b539e
Merge pull request #23835 from VadimLevin:dev/vlevin/fix-ast-nodes-required-usage-imports
fix: AST nodes required usage imports
2023-06-20 18:34:07 +03:00
Vadim Levin
06b40aef91 fix: AST nodes required usage imports 2023-06-20 16:31:55 +03:00
Alexander Smorkalov
51702ffd92 pre: OpenCV 4.8.0 (version++) 2023-06-20 15:52:57 +03:00
Alexander Smorkalov
805946baaf pre: OpenCV 3.4.20 (version++) 2023-06-20 14:10:08 +03:00
Alexander Smorkalov
726ba0210e
Merge pull request #23825 from ulvido:4.x
if browser supports wasm but only asm.js path provided use asm.js as fallback
2023-06-20 13:35:18 +03:00
Anatoliy Talamanov
71790e12ad
Merge pull request #23799 from TolyaTalamanov:at/ov20-backend-implement-missing-kernels
G-API: Implement InferROI, InferList, InferList2 for OpenVINO backend #23799

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-20 13:29:23 +03:00
Anatoliy Talamanov
0cf45b89ec
Merge pull request #23796 from TolyaTalamanov:at/align-ie-backend-with-latest-openvino
G-API: Align IE Backend with the latest OpenVINO version #23796

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-20 12:33:08 +03:00
Alexander Smorkalov
004801f1c5 Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-06-20 09:56:57 +03:00
lamm45
ddcbd2cc26
Merge pull request #22798 from lamm45:distransform-large
Fix distransform to work with large images #22798

This attempts to fix the following bug which was caused by storing squares of large integers into 32-bit floating point variables:
https://github.com/opencv/opencv/issues/22732


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-19 15:11:01 +03:00
Ulvi YELEN
d6d15c136a
if browser supports wasm but only asm.js path provided use asm.js as fallback 2023-06-17 09:38:57 +03:00
Avasam
277b0231f2 fix typo confindece 2023-06-16 20:26:26 -04:00
Alexander Smorkalov
a4a739b99e Force mat_wrapper import to satisfy dependencies for MatLike alias. 2023-06-16 21:51:17 +03:00
Alexander Smorkalov
c0d4e16833
Merge pull request #23819 from asmorkalov:as/objdetect_no_dnn
Fixed barcode to be built without DNN
2023-06-16 20:03:45 +03:00
Vadim Levin
94703fc5b0
Merge pull request #23816 from VadimLevin:dev/vlevin/export-all-caps-enum-constants
Export enums ALL_CAPS version to typing stub files #23816

- Export ALL_CAPS versions alongside from normal names for enum constants, since both versions are available in runtime
- Change enum names entries comments to documentary strings

Before patch
```python
RMat_Access_R: int
RMat_Access_W: int
RMat_Access = int  # One of [R, W]
```
After patch
```python
RMat_Access_R: int
RMAT_ACCESS_R: int
RMat_Access_W: int
RMAT_ACCESS_W: int
RMat_Access = int
"""One of [RMat_Access_R, RMAT_ACCESS_R, RMat_Access_W, RMAT_ACCESS_W]"""
```

Resolves: #23776

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 20:03:19 +03:00
Alexander Smorkalov
496474392e
Merge pull request #23809 from VadimLevin:dev/vlevin/re-export-stubs-submodules
feat: re-export symbols to cv2 level
2023-06-16 20:01:24 +03:00
Dmitry Kurtaev
433c364456
Merge pull request #23724 from dkurt:java_without_ant
Build Java without ANT #23724

### Pull Request Readiness Checklist

Enables a path of building Java bindings without ANT

* Able to build OpenCV JAR and Docs without ANT
  ```
  --   Java:
  --     ant:                         NO
  --     JNI:                         /usr/lib/jvm/default-java/include /usr/lib/jvm/default-java/include/linux /usr/lib/jvm/default-java/include
  --     Java wrappers:               YES
  --     Java tests:                  NO
  ```
* Possible to build OpenCV JAR without ANT but tests still require ANT

**Merge with**: https://github.com/opencv/opencv_contrib/pull/3502

Notes:
- Use `OPENCV_JAVA_IGNORE_ANT=1` to force "Java" flow for building Java bindings
- Java tests still require Apache ANT
- JAR doesn't include `.java` source code files.


See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 19:58:20 +03:00
Dmitry Kurtaev
ec95efca10
Merge pull request #23754 from dkurt:remap_linear_transparent
Keep inliers for linear remap with BORDER_TRANSPARENT #23754

Address https://github.com/opencv/opencv/issues/23562

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23562

I do think that this is a bug because with `INTER_CUBIC + BORDER_TRANSPARENT` the last column and row are preserved. So same should be done for `INTER_LINEAR`

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 18:30:21 +03:00
Alexander Smorkalov
003d048b0d
Merge pull request #23813 from VadimLevin:dev/vlevin/runtime-typing-module
fix: typing module enums references
2023-06-16 18:20:44 +03:00
Alexander Smorkalov
b6d1402361 Fixed barcode to be built without DNN 2023-06-16 15:12:49 +03:00
unknown
1eaa074a49 remove line 2023-06-16 11:28:11 +02:00
cudawarped
024c836462 cv::VideoCapture: change CAP_PROP_FOURCC to prefer codec_id over codec_tag 2023-06-16 11:56:44 +03:00
Maksym Ivashechkin
44881592c3
Merge pull request #23078 from ivashmak:update_vsac
Update USAC #23078

### Pull Request Readiness Checklist

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 10:59:13 +03:00
Alexander Smorkalov
3c0b71bcec
Merge pull request #23795 from dkurt:tf_half_pixel_for_nn
Consider half pixel mode in ONNX resize
2023-06-16 10:21:20 +03:00
Alexander Smorkalov
a9d547dfee
Merge pull request #23807 from mshabunin:barcode-test
objdetect: updated barcode test
2023-06-16 10:10:27 +03:00
Vadim Levin
69ebecc54f feat: add OpenCV error class to cv2/__init__.pyi 2023-06-15 23:10:10 +03:00
unknown
8762c37c22 solve issue 23808 2023-06-15 21:29:18 +02:00
Vadim Levin
a3b6a5b606 fix: typing module enums references
Enum names exist only during type checking.
During runtime they should be denoted as named integral types
2023-06-15 21:29:40 +03:00
dizcza
e625b32841 [opencv 3.x] back-ported tbb support ubuntu 22.04 2023-06-15 19:30:40 +03:00
Dmitry Kurtaev
924c01dbec
Replace CV_Assert_N 2023-06-15 17:30:33 +03:00
Alexander Smorkalov
0d7c039ea1
Merge pull request #23797 from asmorkalov:as/barcode_js_bindings
Barcode js bindings
2023-06-15 17:29:20 +03:00
Alexander Smorkalov
291689a178
Merge pull request #23800 from kai-waang:4.x
removing unreachable code and fixing a typo
2023-06-15 17:28:33 +03:00
Vadim Levin
1acbeb217b feat: re-export symbols to cv2 level
- Re-export native submodules of cv2 package level.
- Re-export  manually registered  symbols like cv2.mat_wrapper.Mat
2023-06-15 16:32:48 +03:00
Maksim Shabunin
2b3424b536 objdetect: updated barcode test 2023-06-15 15:32:19 +03:00
Alexander Smorkalov
538b13aeec JS bindings for bar code detector. 2023-06-15 15:01:01 +03:00
Alexander Smorkalov
0dde3b65d5
Merge pull request #23798 from VadimLevin:dev/vlevin/runtime-typing-module
feat: provide cv2.typing aliases at runtime
2023-06-15 14:41:13 +03:00
Maksim Shabunin
463cd09811
Merge pull request #23666 from mshabunin:barcode-move
Moved barcode from opencv_contrib #23666

Merge with https://github.com/opencv/opencv_contrib/pull/3497

##### TODO
- [x] Documentation (bib)
- [x] Tutorial (references)
- [x] Sample app (refactored)
- [x] Java (test passes)
- [x] Python (test passes)
- [x] Build without DNN
2023-06-14 22:21:38 +03:00
Vadim Levin
5859a531e5 feat: manual refinement for Python API definition
Mark `resize` and `calcHist` arguments as optional regardless of
their C++ API optionality
2023-06-14 21:24:05 +03:00
Vadim Levin
8e8638431d feat: provide cv2.typing aliases at runtime 2023-06-14 20:09:32 +03:00
Wang Kai
fc2d933224 removing unreachable code and fixing a typo 2023-06-15 01:09:02 +08:00
Alexander Smorkalov
52f46589a0
Merge pull request #23790 from asmorkalov:as/qrcode_aruco_js
JS bindings for Aruco-based QR code detector
2023-06-14 17:05:09 +03:00
Dmitry Kurtaev
6909fffde1 Consider half pixel mode in ONNX resize 2023-06-14 14:21:28 +03:00
Damiano Falcioni
19f4f2eb92
Merge pull request #23785 from damianofalcioni:4.x
added Aruco MIP dictionaries #23785

added Aruco MIP dictionaries: DICT_ARUCO_MIP_16h3, DICT_ARUCO_MIP_25h7, DICT_ARUCO_MIP_36h12 from [Aruco.js](https://github.com/damianofalcioni/js-aruco2), converted in opencv format using https://github.com/damianofalcioni/js-aruco2/blob/master/src/dictionaries/utils/dic2opencv.js

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-14 13:29:30 +03:00
Anatoliy Talamanov
b854d4ecd8
Merge pull request #23786 from TolyaTalamanov:at/expose-preprocessing-to-ie-backend
G-API: Expose explicit preprocessing for IE Backend #23786

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-14 09:29:49 +03:00
Alexander Smorkalov
b522148bd9
Merge pull request #23788 from dkurt:py_scalar_assign
Change Scalar assignment in Python from single value
2023-06-13 18:12:00 +03:00
Anatoliy Talamanov
a371bdac9d
Merge pull request #23766 from TolyaTalamanov:at/segmentation-demo-desync
G-API: Refine Semantic Segmentation Demo #23766

### Overview
* Supported demo working with camera id (e.g `--input=0`)
* Supported 3d output segmentation models (e.g `deeplabv3`)
* Supported `desync` execution
* Supported higher camera resolution
* Changed the color map to pascal voc (https://cloud.githubusercontent.com/assets/4503207/17803328/1006ca80-65f6-11e6-9ff6-36b7ef5b9ac6.png)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-13 18:06:19 +03:00
Alexander Smorkalov
3af6001a75 JS bindings for Aruco-based QR code detector. 2023-06-13 17:20:52 +03:00
Alexander Smorkalov
843daca26e JS bingings fix for QR code detector. 2023-06-13 15:36:29 +03:00
Dmitry Kurtaev
f9d7f47e28 Change Scalar assignment in Python from single value 2023-06-13 10:45:03 +03:00
Alexander Smorkalov
e60a7c0d49
Merge pull request #23775 from kai-waang:fixing-typo
fixing typo of a variable name in dnn::runFastConv
2023-06-12 17:50:12 +03:00
zihaomu
37459f89c9 remove unsupported unsupported unicode 2023-06-11 23:02:34 +08:00
Wang Kai
4622f1e89b fixing typo of a variable name in dnn::runFastConv 2023-06-11 01:54:03 +08:00
Alexander Smorkalov
6ca697bc12
Merge pull request #23725 from asmorkalov:as/aruco_js_refresh
Refreshed JavaScript bindings for Aruco related algorithms
2023-06-10 09:21:24 +03:00
Alexander Smorkalov
fe14e7ab24
Merge pull request #23758 from AleksandrPanov:add_GenericGraphicalCode_interface
Add graphical code detector interface
2023-06-09 15:46:32 +03:00
Alexander Smorkalov
61488885b5 Refreshed JavaScript bindings for Aruco related algorithms. 2023-06-09 15:43:43 +03:00
Vincent Rabaud
472aad46a6
Merge pull request #23596 from vrabaud:libavif
Add AVIF support through libavif. #23596

This is to fix https://github.com/opencv/opencv/issues/19271
Extra: https://github.com/opencv/opencv_extra/pull/1069

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-09 15:39:10 +03:00
Alexander Smorkalov
0c8e6e0e68
Merge pull request #23740 from Peekabooc:4.x
fixing typo in stitching parameter names
2023-06-09 13:40:02 +03:00
Pierre Chatelier
60b806f9b8
Merge pull request #22947 from chacha21:hasNonZero
Added cv::hasNonZero() #22947 

`cv::hasNonZero()` is semantically equivalent to (`cv::countNonZero()>0`) but stops parsing the image when a non-zero value is found, for a performance gain

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

This pull request might be refused, but I submit it to know if further work is needed or if I just stop working on it.
The idea is only a performance gain vs `countNonZero()>0` at the cost of more code.

Reasons why it might be refused :

- this is just more code
- the execution time is "unfair"/"unpredictable" since it depends on the position of the first non-zero value
- the user must be aware that default search is from first row/col to last row/col and has no way to customize that, even if his use case lets him know where a non zero could be found
- the PR in its current state is using, for the ocl implementation, a mere `countNonZero()>0` ; there is not much sense in trying to break early the ocl kernel call when non-zero is encountered. So the ocl implementation does not bring any improvement.
- there is no IPP function that can help (`countNonZero()` is based in `ippCountInRange`)
- the PR in its current state might be slower than a call to `countNonZero()>0` in some cases (see "challenges" below)

Reasons why it might be accepted :

- the performance gain is huge on average, if we consider that "on average" means "non zero in the middle of the image"
- the "missing" IPP implementation is replaced by an "Open-CV universal intrinsics" implementation
- the PR in its current state is almost always faster than a call to `countNonZero()>0`, is only slightly slower in the worst cases, and not even for all matrices

**Challenges**
The worst case is either an all-zero matrix, or a non-zero at the very last position.  In such a case, the `hasNonZero()` implementation will parse the whole matrix like `countNonZero()` would do. But we expect the performance to be the same in this case. And `ippCountInRange` is hard to beat !
There is also the case of very small matrices (<=32x32...) in 8b, where the SIMD can be hard to feed.

For all cases but the worse, my custom `hasNonZero()` performs better than `ippCountInRange()`
For the worst case, my custom `hasNonZero()` performs better than `ippCountInRange()` *except for large matrices of type CV_32S or CV_64F* (but surprisingly, not CV_32F).
The difference is small, but it exists (and I don't understand why).
For very small CV_8U matrices `ippCountInRange()` seems unbeatable.

Here is the code that I use to check timings

```

  //test cv::hasNonZero() vs (cv::countNonZero()>0) for different matrices sizes, types, strides...
  {
    cv::setRNGSeed(1234);
    const std::vector<cv::Size> sizes = {{32, 32}, {64, 64}, {128, 128}, {320, 240}, {512, 512}, {640, 480}, {1024, 768}, {2048, 2048}, {1031, 1000}};
    const std::vector<int> types = {CV_8U, CV_16U, CV_32S, CV_32F, CV_64F};
    const size_t iterations = 1000;
    for(const cv::Size& size : sizes)
    {
      for(const int type : types)
      {
        for(int c = 0 ; c<2 ; ++c)
        {
          const bool continuous = !c;
          for(int i = 0 ; i<4 ; ++i)
          {
            cv::Mat m = continuous ? cv::Mat::zeros(size, type) : cv::Mat(cv::Mat::zeros(cv::Size(2*size.width, size.height), type), cv::Rect(cv::Point(0, 0), size));
            const bool nz = (i <= 2);
            const unsigned int nzOffsetRange = 10;
            const unsigned int nzOffset = cv::randu<unsigned int>()%nzOffsetRange;
            const cv::Point pos = 
              (i == 0) ? cv::Point(nzOffset, 0) :
              (i == 1) ? cv::Point(size.width/2-nzOffsetRange/2+nzOffset, size.height/2) :
              (i == 2) ? cv::Point(size.width-1-nzOffset, size.height-1) :
              cv::Point(0, 0);
            std::cout << "============================================================" << std::endl;
            std::cout << "size:" << size << "  type:" << type << "  continuous = " << (continuous ? "true" : "false") << "  iterations:" << iterations << "  nz=" << (nz ? "true" : "false");
            std::cout << "  pos=" << ((i == 0) ? "begin" : (i == 1) ? "middle" : (i == 2) ? "end" : "none");
            std::cout << std::endl;
            cv::Mat mask = cv::Mat::zeros(size, CV_8UC1);
            mask.at<unsigned char>(pos) = 0xFF;
            m.setTo(cv::Scalar::all(0));
            m.setTo(cv::Scalar::all(nz ? 1 : 0), mask);
            std::vector<bool> results;
            std::vector<double> timings;

            {
              bool res = false;
              auto ref = cv::getTickCount();
              for(size_t k = 0 ; k<iterations ; ++k)
                res = cv::hasNonZero(m);
              auto now = cv::getTickCount();
              const bool error = (res != nz);
              if (error)
                printf("!!ERROR!!\r\n");
              results.push_back(res);
              timings.push_back(1000.*(now-ref)/cv::getTickFrequency());
            }
            {
              bool res = false;
              auto ref = cv::getTickCount();
              for(size_t k = 0 ; k<iterations ; ++k)
                res = (cv::countNonZero(m)>0);
              auto now = cv::getTickCount();
              const bool error = (res != nz);
              if (error)
                printf("!!ERROR!!\r\n");
              results.push_back(res);
              timings.push_back(1000.*(now-ref)/cv::getTickFrequency());
            }

            const size_t bestTimingIndex = (std::min_element(timings.begin(), timings.end())-timings.begin());
            if ((bestTimingIndex != 0) || (std::find_if_not(results.begin(), results.end(), [&](bool r) {return (r == nz);}) != results.end()))
            {
              std::cout << "cv::hasNonZero\t\t=>" << results[0] << ((results[0] != nz) ? "  ERROR" : "") << "   perf:" << timings[0] << "ms => " << (iterations/timings[0]*1000) << " im/s" << ((bestTimingIndex == 0) ? " * " : "") << std::endl;
              std::cout << "cv::countNonZero\t=>" << results[1] << ((results[1] != nz) ? "  ERROR" : "") << "   perf:" << timings[1] << "ms => " << (iterations/timings[1]*1000) << " im/s" << ((bestTimingIndex == 1) ? " * " : "") << std::endl;
            }
          }
        }
      }
    }
  }

```

Here is a report of this benchmark (it only reports timings when `cv::countNonZero()` is faster)
My CPU is an Intel Core I7 4790 @ 3.60Ghz

```

============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
cv::hasNonZero          =>1   perf:0.353764ms => 2.82674e+06 im/s
cv::countNonZero        =>1   perf:0.282044ms => 3.54555e+06 im/s *
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:0.610478ms => 1.63806e+06 im/s
cv::countNonZero        =>1   perf:0.283182ms => 3.5313e+06 im/s *
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:0.630115ms => 1.58701e+06 im/s
cv::countNonZero        =>0   perf:0.282044ms => 3.54555e+06 im/s *
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:0.607347ms => 1.64651e+06 im/s
cv::countNonZero        =>1   perf:0.467037ms => 2.14116e+06 im/s *
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:0.618162ms => 1.6177e+06 im/s
cv::countNonZero        =>0   perf:0.468175ms => 2.13595e+06 im/s *
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:895.381ms => 1116.84 im/s
cv::countNonZero        =>1   perf:882.569ms => 1133.06 im/s *
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:899.53ms => 1111.69 im/s
cv::countNonZero        =>0   perf:870.894ms => 1148.24 im/s *
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:2018.92ms => 495.313 im/s
cv::countNonZero        =>1   perf:1966.37ms => 508.552 im/s *
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:2005.87ms => 498.537 im/s
cv::countNonZero        =>0   perf:1992.78ms => 501.812 im/s *
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=false  pos=none
done

```
2023-06-09 13:37:20 +03:00
Zihao Mu
eec8a20c33
Merge pull request #23763 from zihaomu:add_runtime_check
DNN: fix bug for X86 Winograd #23763

Address https://github.com/opencv/opencv/issues/23760
The patch aims to add a runtime check for X86 platform without AVX(2).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-09 09:18:12 +03:00
Alexander Smorkalov
5d913f4d72
Merge pull request #21959 from cpoerschke:4.x-intelligent-scissors-optimisation
imgproc: optimise local cost computation in IntelligentScissorsMB::buildMap
2023-06-08 16:45:04 +03:00
Alex
b729d8e821 added graphicalCodeDetector, remove QRCodeDetectorBase 2023-06-08 14:50:58 +03:00
Alexander Smorkalov
6d2cbc4055
Merge pull request #23761 from LaurentBerger:typeblobfromimages
checktype in blobFromImages and blobFromImagesWithParams
2023-06-08 09:59:01 +03:00
Christine Poerschke
f597838685 imgproc: optimise local cost computation in IntelligentScissorsMB::buildMap 2023-06-07 22:06:52 +01:00
TolyaTalamanov
af95395fe7 Fix ifdef condition 2023-06-07 15:42:54 +01:00
unknown
5f8e43da85 checktype in blobFromImages and blobFromImagesWithParams 2023-06-07 16:15:58 +02:00
Abduragim Shtanchaev
6b53fe8f7b
Merge pull request #23746 from Abdurrahheem:ash/graph_simplifier
Assertion Fix in Split Layer #23746

### Pull Request Readiness Checklist

This PR fixes issue mentioned in [#23663](https://github.com/opencv/opencv/issues/23663)
Merge with https://github.com/opencv/opencv_extra/pull/1067

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-07 16:01:42 +03:00
Christine Poerschke
d3e7968927
Merge pull request #23688 from cpoerschke:4.x-pr-21959-prep
imgproc: add contour values check to IntelligentScissorsMB tests

Preparation for the #21959 changes as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1560511500 suggestion.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-07 11:32:17 +03:00
Alexander Smorkalov
b9ce87e8e2
Merge pull request #23750 from mshabunin:fix-bgr2hls-access
imgproc/cvtColor: fixed invalid read in BGR2HLS
2023-06-06 11:34:08 +03:00
Alexander Smorkalov
af03e000c7
Merge pull request #23732 from vekkuli:vekkuli-patch-create-featherblender
Fix missuse of try_gpu in stitching/FeatherBlender
2023-06-06 10:00:36 +03:00
Maksim Shabunin
adab462e42 imgproc/cvtColor: fixed invalid read in BGR2HLS 2023-06-05 23:25:44 +03:00
Alex
b5ac7ef2f2 fix cornerRefinementMethod binding 2023-06-05 11:04:11 +03:00
Wang Kai
983925c685 fixing typo 2023-06-04 19:06:26 +08:00
Jaakko Rantala
385003e9fe
Update blenders.cpp
Removed passing try_gpu parameter to FeatherBlender constructor because it only has sharpness parameter.
2023-06-02 16:46:05 +03:00
Alexander Panov
9fa014edcd
Merge pull request #23264 from AleksandrPanov:add_detect_qr_with_aruco
Add detect qr with aruco #23264

Using Aruco to detect finder patterns to search QR codes.

TODO (in next PR):
- add single QR detect (update `detect()` and `detectAndDecode()`)
- need reduce full enumeration of finder patterns
- need add finder pattern info to `decode` step
- need to merge the pipeline of the old and new algorithm

[Current results:](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit#gid=1192415584)
+20% total detect, +8% total decode in OpenCV [QR benchmark](https://github.com/opencv/opencv_benchmarks/tree/develop/python_benchmarks/qr_codes) 

![res1](https://user-images.githubusercontent.com/22337800/231228556-191d3eae-a318-44e1-af99-e7d420bf6248.png)


78.4% detect, 58.7% decode vs 58.5 detect, 50.5% decode in default

[main.py.txt](https://github.com/opencv/opencv/files/10762369/main.py.txt)

![res2](https://user-images.githubusercontent.com/22337800/231229123-ed7f1eda-159a-444b-a3ff-f107d8eb4a20.png)


add new info to [google docs](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit?usp=sharing)


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-02 16:18:24 +03:00
Anatoliy Talamanov
5330112f05
Merge pull request #23595 from TolyaTalamanov:at/implement-openvino-backend
[G-API] Implement OpenVINO 2.0 backend #23595

### Pull Request Readiness Checklist

Implemented basic functionality for `OpenVINO` 2.0 G-API backend.

#### Overview
- [x] Implement `Infer` kernel with some of essential configurable parameters + IR/Blob models format support.
- [ ] Implement the rest of kernels: `InferList`, `InferROI`, `Infer2` + other configurable params (e.g reshape)
- [x] Asyncrhonous execution support
- [ ] Remote context support

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-02 14:31:03 +03:00
Alexander Smorkalov
2104d61d4a
Merge pull request #23668 from TolyaTalamanov:at/fix-resize-applying-logic-ie-backend
WIP: [G-API] IE Backend: Update the condition for applying the resize preprocessing
2023-06-01 13:55:07 +03:00
Alexander Smorkalov
0787c31f41 Python package classifiers sync with OpenCV-Python repo. 2023-06-01 10:49:27 +03:00
Anna Khakimova
6d3dd24622
Merge pull request #21797 from anna-khakimova:ak/merge3_extend_supported_types
GAPI Fluid SIMD:Add support of new several types for the Merge3

- Support of the new several types was added.
- Fixes for the Split/Merge and ConvertTo issues.
2023-05-31 14:59:39 +03:00
Dmitry Matveev
fc5d412ba7
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597

# Changes overview

## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python

* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)

UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.

### Details (taken from @TolyaTalamanov's comment):

`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:

1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
#     norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
#     # add batch channel
#     norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
#     return norm_img_data

# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```

2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.

---

`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.

## 2. Expose Fluid & kernel package-related functionality in Python

* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`

Added a test for the above.

## 3. Fixed issues with Python stateful kernel handling

Fixed error message when `outMeta()` of custom python operation fails.

## 4. Fixed various issues in Python tests

1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:52:17 +03:00
Pierre Chatelier
93d490213f
Merge pull request #23690 from chacha21:rotatedRectangleIntersection_precision
better accuracy for _rotatedRectangleIntersection() (proposal for #23546) #23690

_rotatedRectangleIntersection() can be (statically) customized to use double instead of float for better accuracy
this is a proposal for experimentation around #23546

for better accuracy, _rotatedRectangleIntersection() could use double. It will still return cv::Point2f list for backward compatibility, but the inner computations are controlled by a typedef

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:46:39 +03:00
Alexander Smorkalov
d24ffe9a65
Merge pull request #23705 from asmorkalov:as/cxx-named-arguments
Re-implement named parameters bindings for Python #23705

Reverted named argument handling from #19156.
Ported new solution from #23224
The port is required to harmonize 4.x -> 5.x merges.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:41:41 +03:00
Olivier Hotel
0442c6fa81 Addition of normalize_axis to ONNXImporter::parseSqueeze to support negative values for the axes attribut.
Negative values are part of the ONNX optset>=11.

Signed-off-by: Olivier Hotel <olivier.hotel@orange.com>
2023-05-30 10:21:27 +02:00
Abduragim Shtanchaev
ecd2e8ff47 added index that check all inputs of nodes that
match
2023-05-29 14:48:42 +03:00
Alexander Smorkalov
02397ef851
Merge pull request #23567 from seanm:UBSan-overflow
Reformulated some pointer arithmetic to avoid (unsigned) overflow
2023-05-29 12:19:34 +03:00
Christine Poerschke
b5e9eb742c
Merge pull request #23698 from cpoerschke:4.x-pr-21959-perf
imgproc: add basic IntelligentScissorsMB performance test #23698

Adding basic performance test that can be used before and after the #21959 changes etc. as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1565240926 comment.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-29 11:02:59 +03:00
triple Mu
1bffe170e1
Update setup.py
Fix error:
UnboundLocalError: local variable 'typing_stub_files' referenced before assignment
2023-05-27 17:23:32 +08:00
Alexander Smorkalov
7b998c30e7
Merge pull request #23694 from dkurt:update_matchTemplateMask
Update matchTemplate with mask
2023-05-27 09:42:55 +03:00
Sean McBride
2083fdc9c0 Fixed UBSan warning about undefined pointer arithmetic overflow
Pointer arithmetic overflow is always undefined, whether signed or unsigned.

It warned here:

`Addition of unsigned offset to 0x00017fd31b97 overflowed to 0x00017fd30c97`

Convert the offset to a signed number, so that we can offset either forward or backwards.

In my own use of OpenCV at least, this is the only case of pointer arithmetic overflow.
2023-05-26 15:54:52 -04:00
Alexander Smorkalov
d1b158b9dd
Merge pull request #23692 from asmorkalov:as/ffmpeg_fps_3.4
backport to 3.4: Fixed FPS computation on some videos for FFmpeg backend
2023-05-26 20:47:13 +03:00
Dmitry Kurtaev
380caa1a87
Merge pull request #23691 from dkurt:pycv_float16_fixes
Import and export np.float16 in Python #23691

### Pull Request Readiness Checklist

* Also, fixes `cv::norm` with `NORM_INF` and `CV_16F`

resolves https://github.com/opencv/opencv/issues/23687

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-26 18:56:21 +03:00
Alexander Smorkalov
900f17d563
Merge pull request #23677 from asmorkalov:as/objc_naming_backport
ObjC naming backport from 5.x
2023-05-26 18:54:34 +03:00
Dmitry Kurtaev
c97942cf78 Fix mask thresholding 2023-05-26 18:51:33 +03:00
captain-n3m0
6157db6462 Fixed matchTemplate function. #23585 2023-05-26 18:51:01 +03:00
Duong Dac
a9424868a1
Merge pull request #20370 from ddacw:stub-gen-next
Python typing stub generation #20370

Add stub generation to `gen2.py`, addressing #14590.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-26 18:25:46 +03:00
Alexander Smorkalov
cbda161c39 Fixed FPS computation on some videos for FFmpeg backend. 2023-05-26 14:36:13 +03:00
Alexander Smorkalov
cf0ba039c3
Merge pull request #23625 from zihaomu:improve_conv
DNN: Remove unnecessary flags for convolution
2023-05-26 12:59:36 +03:00
Alexander Smorkalov
65487946cc Added final constrants check to solveLP to filter out flating-point numeric issues. 2023-05-25 17:29:01 +03:00
Dmitry Kurtaev
4823285b55
Merge pull request #23679 from dkurt:py_cv_type_macro
Python bindings for CV_8UC(n) and other types macros #23679

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23628#issuecomment-1562468327

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 15:54:41 +03:00
Alexander Smorkalov
26a7b332cb
Merge pull request #23671 from zihaomu:fix_potential_bug
DNN: fix potential bug, stride should not be set as 0.
2023-05-25 13:36:37 +03:00
Yuantao Feng
f07b01cc34
Merge pull request #23655 from fengyuentau:qlinearsoftmax
Support ONNX operator QLinearSoftmax in dnn #23655

Resolves https://github.com/opencv/opencv/issues/23636.
Merge with https://github.com/opencv/opencv_extra/pull/1064.

This PR maps the QLinearSoftmax (from com.microsoft domain) to SoftmaxInt8 in dnn along with some speed optimization.

Todo:
- [x] support QLinearSoftmax with opset = 13
- [x] add model and test data for QLinearSoftmax with opset = 13
- [x] ensure all models have dims >= 3.
- [x] add the script to generate model and test data 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 13:35:58 +03:00
Alexander Smorkalov
bbda6f4c57 Backport 5.x: Support for module names that start from digit in ObjC bindings generator. 2023-05-25 11:45:59 +03:00
Dmitry Kurtaev
29b2f77b5f
Merge pull request #23674 from dkurt:py_cv_maketype
CV_MAKETYPE Python binding #23674 

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23628

```python
import cv2 as cv

t = cv.CV_MAKETYPE(cv.CV_32F, 4)
```

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 09:45:22 +03:00
Maksim Shabunin
537060d96f
Merge pull request #23672 from mshabunin:fix-javadoc17 2023-05-24 23:07:27 +03:00
zihaomu
4384e77bd1 when stride ==0, it should be bug 2023-05-24 21:57:59 +08:00
TolyaTalamanov
dc714c1181 Change logic for applying resize 2023-05-24 13:06:19 +00:00
Alexander Smorkalov
d4861bfd1f Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-05-24 14:37:48 +03:00
Akshat Chauhan
c07145fe28
Merge pull request #23662 from akormous:docfix
Fix truncated sentenced in boxPoints documentation #22975 #23662

Resolves #22975

Completed the sentence as per the suggestion given in the issue #22975
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-24 11:41:25 +03:00
Alexander Smorkalov
98d678c2d2 Added check that YUYV input of cvtColor has even width. 2023-05-23 14:17:43 +03:00
Alexander Smorkalov
4a559bc2ab
Merge pull request #23656 from peters:patch-2
Build fix for AVX 256
2023-05-23 09:20:34 +03:00
Alexander Smorkalov
e3c5c0906b
Merge pull request #23371 from cudawarped:cuda_add_futher_python_interop
`cuda`: Add bindings to allow `GpuMat` and `Stream` objects to be initialized from memory initialized in other libraries
2023-05-22 18:17:12 +03:00
Alexander Smorkalov
b122a4b436
Merge pull request #23646 from dkurt:dnn_ie_region_fix
Fix Region layer with OpenVINO in case of different width/height
2023-05-22 16:22:50 +03:00
Christine Poerschke
d00a96315e
Merge pull request #23612 from cpoerschke:3.4-issue-21532
QRCodeDetector: don't floodFill with outside-of-image seedPoint #23612

Fixes #21532.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-22 13:34:30 +03:00
Peter Rekdal Khan-Sunde
04970490ec
Build fix
/build/build_cuda/3p/opencv/linux-x64/ubuntu22.04/Debug/modules/dnn/src/layers/cpu_kernels/convolution.cpp: In function 'void cv::dnn::packData8(char*&, float*&, int&, int&, int&, const int*, int, int, int)':
/build/build_cuda/3p/opencv/linux-x64/ubuntu22.04/Debug/modules/dnn/src/layers/cpu_kernels/convolution.cpp:448:43: error: 'CONV_NR' was not declared in this scope; did you mean 'CONV_3D'?
  448 |                 vx_store(inpbufC_FP32 + k*CONV_NR, vx_load(inptrInC + k1));
      |                                           ^~~~~~~
      |                                           CONV_3D
2023-05-22 11:25:04 +02:00
cudawarped
7539abecdb cuda: add python bindings to allow GpuMat and Stream objects to be initialized from raw pointers 2023-05-22 11:02:04 +03:00
Alexander Smorkalov
3f3c821800
Merge pull request #23631 from asmorkalov:as/eigen_NOMINMAX_warning_fix
Build warning fix on Windows for Eigen wrapper.
2023-05-19 21:06:41 +03:00
Alexander Smorkalov
c946285a07
Merge pull request #23601 from cudawarped:videocapture_threading
Videoio: FFMpeg remove locks from `VideoCapure/VideoWriter::open()` to fix 20114
2023-05-19 20:33:25 +03:00
Dmitry Kurtaev
c92135bdd1
Merge pull request #23634 from dkurt:fix_nearest_exact
Fix even input dimensions for INTER_NEAREST_EXACT #23634

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/22204
related: https://github.com/opencv/opencv/issues/9096#issuecomment-1551306017

/cc @Yosshi999

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-19 20:32:04 +03:00
Alexander Smorkalov
f2311d1bfd
Merge pull request #23645 from Abdurrahheem:ash/tf_init_input_check
Add assert to check if layer input size is not empty
2023-05-19 13:28:24 +03:00
Zihao Mu
5025f29378
speed up vulkan dnn, and support ios and apple m1 chip. (#23349) 2023-05-18 20:02:27 +03:00
Dmitry Kurtaev
af14780526 Fix Region layer with OpenVINO in case of different width/height 2023-05-18 17:45:30 +03:00
Abduragim Shtanchaev
2b9d2c726a add assert to check if layer input size is not empty 2023-05-18 16:17:57 +03:00
SoY Szala
340e999c45 Proposed solution for issue #23633 2023-05-17 23:06:59 +02:00
Abduragim Shtanchaev
d2143bcd44
Merge pull request #23614 from Abdurrahheem:lstm_layout_attribute
LSTM ONNX Layout Attribute Support #23614 

### Explanation

This PR contains necessary changes to support `layout` attribute. This attributes is present in [ONNX](https://github.com/onnx/onnx/blob/main/docs/Operators.md#lstm) and [Torch](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#lstm) (in touch it is name as `batch_first=True`) libraries. When `layout = 1` input to LSTM layer is expected to have batch dimension first -> `[batch_size, sequence_length, features]` vs `layout = 0` - default `[sequence_length, batch_size, features]`

### Test Data

Test data and data generator for PR located here [#1063](https://github.com/opencv/opencv_extra/pull/1063)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-17 22:46:56 +03:00
Alexander Smorkalov
ae8c90301f Fixed mask handling in AffineFeature. 2023-05-17 12:04:52 +03:00
Alexander Smorkalov
4eec739624 Build warning fix on Windows for Eigen wrapper. 2023-05-17 10:12:02 +03:00
Yuantao Feng
eefee8574a
dnn: refactor reduce (#23613)
* initial impl

* remove reduce in8; fix reduce importer

* fix bugs and add log sum exp

* remove unnecessary header and fix indentation
2023-05-17 10:03:45 +03:00
Zihao Mu
5229312ad2
Merge pull request #22275 from zihaomu:fp16_support_conv
DNN: FP16 support on Convolution 2D #22275 

## FP16 support on ARM platform
This PR proposes to support FP16 backend in Convolution.
For now, we only support FP16 at ARM aarch64.

In addition to adding fp16, I also added `seperateIm2col` optimization in this patch.

## How to use FP16 to speed up convolution?
```
Net net = readNet(modelPath);
net.setPreferableTarget(DNN_TARGET_CPU_FP16);
net.setInput(blob);
Mat output = net.forward();
```

### TODO List
| Task | Status | Remarks |
|:-------:|:--------:|:------------:|
| Convolution 2D FP16 | ✔️ | Done |
| Winograd FP16 | Because the current modification has reached 2k lines, winograd fp16 will be completed in the next PR. |  |
| Accuracy Test | ✔️ | Done |
| Performance Test | ✔️ | Done |
| Compiler bug | ✔️ | Done |

### Speed Test for FP 16.

**Test on M1 chip, 4 threads.**

| Model Name | FP32 (Conv+Wino) | Conv(FP16) + Wino(FP 32) |
|:-------:|:--------:|:------------:|
| ReseNet 50 | 26.0 ms | **18.05 ms** (25% speed up)|
| MobileNet V2 | 4.17 ms | **3.09 ms (29% speed up)** |

### Speed Test for `seperateIm2col` trick on X86.
**Test on AMD 5600x, 12 threads.**
| Model Name | 4.x | Patch |
|:-------:|:--------:|:------------:|
| MobileNet V2 | 5.6 ms | **3.0 ms (46% speed up)** |

### Performance Test

#### Performance Test of X86 platform: AMD 5600X, with `-perf_threas=1`
|Name of Test|4.x|patch|patch vs 4.x (x-factor)|
|---|:-:|:-:|:-:|
|Name of Test|4.x 0|fp16pr final|fp16pr final vs 4.x 0 (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.00|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.03|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.001|0.001|0.92|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.002|0.003|0.95|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.006|0.006|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.045|0.033|1.39|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.011|0.009|1.17|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.109|0.078|1.39|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.040|0.042|0.94|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.326|0.342|0.95|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.580|0.589|0.99|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.293|1.382|0.94|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.590|3.710|0.97|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.120|1.191|0.94|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.576|2.872|0.90|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.599|4.670|0.98|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|9.230|9.582|0.96|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|65.946|69.381|0.95|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|18.915|19.289|0.98|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|1.404|1.457|0.96|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|2.060|1.501|1.37|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.409|1.464|0.96|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|1.793|1.838|0.98|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.207|1.199|1.01|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.277|1.275|1.00|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.319|2.370|0.98|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.351|1.346|1.00|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|3.520|3.612|0.97|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.876|1.880|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.981|1.995|0.99|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|2.620|2.627|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|4.202|4.123|1.02|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.429|2.445|0.99|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|2.591|2.576|1.01|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|3.005|2.998|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|3.515|3.532|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|3.115|3.134|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.937|3.899|1.01|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|5.533|5.471|1.01|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.472|3.464|1.00|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|4.302|4.322|1.00|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|6.100|6.035|1.01|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|6.580|6.484|1.01|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|9.741|9.634|1.01|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|10.131|10.156|1.00|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|12.391|12.350|1.00|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|91.074|87.893|1.04|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|5.903|5.903|1.00|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.890|6.794|1.01|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.160|5.131|1.01|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|4.970|5.036|0.99|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|5.045|5.015|1.01|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|11.583|11.343|1.02|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.348|5.320|1.01|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|5.357|5.396|0.99|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|6.050|6.006|1.01|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|5.952|5.953|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|8.014|8.014|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.472|12.577|0.99|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|10.803|10.655|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|18.429|13.405|1.37|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|6.659|6.647|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|14.192|13.819|1.03|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|6.045|6.068|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.742|12.828|0.99|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|8.046|7.773|1.04|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.440|17.192|1.01|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|15.418|14.972|1.03|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.430|0.430|1.00|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|6.692|6.663|1.00|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|6.350|6.347|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.267|0.265|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|7.755|7.558|1.03|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.203|0.202|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.663|10.576|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|10.827|10.614|1.02|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|7.049|6.947|1.01|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|6.900|6.901|1.00|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.165|0.165|1.00|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|17.953|17.251|1.04|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|7.430|7.320|1.01|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|22.187|21.705|1.02|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|8.349|8.126|1.03|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|8.273|8.297|1.00|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|8.169|8.094|1.01|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|13.602|13.359|1.02|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|8.633|8.584|1.01|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|29.339|28.897|1.02|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|13.000|12.920|1.01|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|14.262|13.319|1.07|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|27.453|27.253|1.01|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|32.052|27.269|1.18|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|15.363|15.208|1.01|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|18.543|18.434|1.01|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|39.114|37.954|1.03|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|36.271|36.972|0.98|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|19.262|19.427|0.99|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.298|19.349|1.00|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.261|19.847|1.02|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.867|21.525|1.02|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|51.756|49.979|1.04|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|28.133|27.060|1.04|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|25.035|24.980|1.00|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|25.858|25.821|1.00|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|27.313|27.149|1.01|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|28.219|28.111|1.00|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|46.025|46.674|0.99|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|30.220|29.446|1.03|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|49.410|48.708|1.01|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|38.203|38.001|1.01|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|39.961|39.021|1.02|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|48.685|47.075|1.03|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|75.114|72.586|1.03|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|41.222|41.144|1.00|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|46.220|46.353|1.00|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|98.201|98.771|0.99|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|100.106|96.971|1.03|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|146.977|140.445|1.05|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|198.618|194.665|1.02|


#### Performance Test of ARM platform: apple M1, with `-perf_threas=1`

Min (ms)

|Name of Test|4.x|patch|4.x vs patch (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.07|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.10|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.002|0.002|0.97|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.003|0.003|0.84|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.009|0.009|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.027|0.030|0.90|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.008|0.007|1.07|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.066|0.072|0.91|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.090|0.054|1.68|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.328|0.409|0.80|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.659|0.697|0.95|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.266|1.403|0.90|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.550|4.145|0.86|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.188|1.375|0.86|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.683|3.236|0.83|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.491|5.501|0.82|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|8.916|10.181|0.88|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.995|72.296|0.97|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|22.531|23.139|0.97|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|2.239|1.933|1.16|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU_FP16)|-|1.010|-|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|3.134|2.068|1.52|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU_FP16)|-|1.062|-|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.918|1.920|1.00|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU_FP16)|-|1.014|-|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.340|2.352|0.99|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.247|-|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.116|1.111|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU_FP16)|-|1.114|-|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.116|1.112|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|1.113|-|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|3.067|3.085|0.99|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.622|-|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.153|1.187|0.97|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU_FP16)|-|1.150|-|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|4.804|4.849|0.99|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU_FP16)|-|2.922|-|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.463|1.469|1.00|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.459|-|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.577|1.580|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|1.580|-|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|1.826|1.818|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|1.817|-|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|6.541|5.081|1.29|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|2.809|-|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.912|1.919|1.00|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.919|-|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|1.961|1.971|0.99|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|1.961|-|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.317|2.329|0.99|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.322|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|2.920|2.947|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|2.924|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|2.467|2.466|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|2.496|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.028|2.997|1.01|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|2.986|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|4.353|4.355|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|4.355|-|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.762|2.793|0.99|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.797|-|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|3.428|3.226|1.06|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU_FP16)|-|3.223|-|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|3.967|3.957|1.00|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU_FP16)|-|3.960|-|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|4.806|4.387|1.10|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU_FP16)|-|4.366|-|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|14.509|11.756|1.23|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|6.510|-|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|13.718|13.287|1.03|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.190|-|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|15.133|14.853|1.02|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|8.671|-|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|41.928|43.328|0.97|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|38.072|-|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.409|4.428|1.00|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.427|-|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.144|5.363|1.15|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU_FP16)|-|5.368|-|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.926|3.932|1.00|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.938|-|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.920|3.915|1.00|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.950|-|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|3.767|3.764|1.00|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|3.762|-|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|19.959|13.875|1.44|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU_FP16)|-|7.781|-|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.951|3.955|1.00|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.969|-|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|4.050|4.034|1.00|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.093|-|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|4.923|4.506|1.09|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.509|-|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|4.759|4.476|1.06|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.447|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|6.079|5.628|1.08|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|5.625|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.843|17.523|1.13|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.917|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|8.334|8.247|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU_FP16)|-|8.246|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|23.164|18.199|1.27|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.305|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|5.184|5.178|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|5.149|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.990|18.103|0.99|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.777|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|4.831|4.522|1.07|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.523|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.328|17.319|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.948|-|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|5.944|5.961|1.00|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|5.936|-|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.811|20.064|0.99|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|11.705|-|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|22.398|17.686|1.27|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU_FP16)|-|9.859|-|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.416|0.416|1.00|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.417|-|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|5.356|5.110|1.05|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|5.114|-|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|5.092|4.748|1.07|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.754|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.260|0.229|1.13|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.229|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|5.872|5.460|1.08|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|5.460|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.161|0.161|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.161|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|7.176|7.175|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.162|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|7.174|7.185|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|7.157|-|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|5.400|5.180|1.04|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.201|-|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|5.330|5.188|1.03|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.177|-|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.115|0.115|1.00|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.115|-|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|26.156|20.222|1.29|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU_FP16)|-|11.203|-|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|5.627|5.543|1.02|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.506|-|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|27.925|27.741|1.01|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|17.217|-|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|6.359|6.062|1.05|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.048|-|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|6.559|6.322|1.04|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|6.280|-|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|6.412|6.200|1.03|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.197|-|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|9.167|8.624|1.06|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU_FP16)|-|8.626|-|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|6.755|6.491|1.04|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.520|-|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|35.664|34.752|1.03|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|20.260|-|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|9.514|9.414|1.01|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.462|-|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|10.631|9.963|1.07|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.935|-|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|37.465|36.798|1.02|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|19.569|-|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|38.157|36.157|1.06|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU_FP16)|-|18.902|-|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.356|10.401|1.00|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|10.360|-|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|12.641|12.150|1.04|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|12.162|-|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|50.545|50.505|1.00|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|27.950|-|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|54.233|49.603|1.09|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|26.515|-|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|13.779|12.968|1.06|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|12.984|-|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|15.809|15.329|1.03|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|15.433|-|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|14.563|14.527|1.00|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|14.480|-|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|16.714|16.484|1.01|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|16.362|-|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|77.832|65.729|1.18|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|32.065|-|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|21.903|20.386|1.07|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|20.416|-|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|20.405|18.148|1.12|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|18.128|-|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.334|18.521|1.10|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|18.495|-|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.527|19.584|1.10|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|19.630|-|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|22.715|20.057|1.13|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|20.068|-|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|26.228|24.992|1.05|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|24.957|-|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|21.524|21.581|1.00|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|21.782|-|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|34.094|31.964|1.07|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|31.925|-|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|28.677|27.813|1.03|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.808|-|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|31.274|27.892|1.12|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.910|-|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|30.533|30.007|1.02|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|30.089|-|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|39.837|38.312|1.04|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|38.477|-|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|32.480|29.237|1.11|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU_FP16)|-|29.452|-|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|33.544|32.832|1.02|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|32.784|-|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|134.481|130.678|1.03|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU_FP16)|-|70.134|-|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|127.930|126.530|1.01|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|65.261|-|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|201.346|187.007|1.08|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|91.525|-|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|252.038|245.587|1.03|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU_FP16)|-|125.477|-|

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-17 09:38:33 +03:00
cudawarped
99ef35a353 Videoio: FFMpeg remove locks if OPENCV_FFMPEG_IS_THREAD_SAFE==true 2023-05-17 08:20:46 +03:00