Add support for YOLOv4x-mish
* backport to 3.4 for supporting yolov4x-mish
* add YOLOv4x-mish test
* address review comments
Co-authored-by: Guo Xu <guoxu@1school.com.cn>
Add CAP_PROP_STREAM_OPEN_TIME
* Added CAP_PROP_STREAM_OPEN_TIME to videoio module - can be used to query the time at which the stream was opened, in seconds since Jan 1 1970 (midnight, UTC). Useful for RTSP and other live video where absolute timestamps are needed. Only applicable to ffmpeg backends
* use nanoseconds instead of seconds to mark the stream open time, and change the cap prop name to CAP_PROP_STREAM_OPEN_TIME_NSEC
* use microseconds for CAP_PROP_STREAM_OPEN_TIME (nanoseconds rolls over too soon, and milliseconds/seconds requires a division)
* fix whitespace issue
Add Normalize subgraph, fix Slice, Mul and Expand
* Add Normalize subgraph, support for starts<0 and axis<0 in Slice, Mul broadcasting in the middle and fix Expand's unsqueeze
* remove todos
* remove range-based for loop
* address review comments
* change >> to > > in template
* fix indexation
* fix expand that does nothing
* support PPSeg model for dnn module
* fixed README for CI
* add test case
* fixed bug
* deal with comments
* rm dnn_model_runner
* update test case
* fixed bug for testcase
* update testcase
`PyObject*` to `std::vector<T>` conversion logic:
- If user passed Numpy Array
- If array is planar and T is a primitive type (doesn't require
constructor call) that matches with the element type of array, then
copy element one by one with the respect of the step between array
elements. If compiler is lucky (or brave enough) copy loop can be
vectorized.
For classes that require constructor calls this path is not
possible, because we can't begin an object lifetime without hacks.
- Otherwise fall-back to general case
- Otherwise - execute the general case:
If PyObject* corresponds to Sequence protocol - iterate over the
sequence elements and invoke the appropriate `pyopencv_to` function.
`std::vector<T>` to `PyObject*` conversion logic:
- If `std::vector<T>` is empty - return empty tuple.
- If `T` has a corresponding `Mat` `DataType` than return
Numpy array instance of the matching `dtype` e.g.
`std::vector<cv::Rect>` is returned as `np.ndarray` of shape `Nx4` and
`dtype=int`.
This branch helps to optimize further evaluations in user code.
- Otherwise - execute the general case:
Construct a tuple of length N = `std::vector::size` and insert
elements one by one.
Unnecessary functions were removed and code was rearranged to allow
compiler select the appropriate conversion function specialization.
[G-API] Extend compileStreaming to support different overloads
* Make different overloads
* Order python compileStreaming overloads
* Fix compileStreaming bug
* Replace
gin -> descr_of
* Set error message
* Fix review comments
* Use macros for pyopencv_to GMetaArgs
* Use GAPI_PROP_RW
* Not split Prims python stuff
* Added exposure and gain props, maximized pixel clk
* removed pixel clock maximization
pixel clock maximization is not suitable for all use cases, so I removed it from PR.
* videoio/gstreamer: Add support for GRAY16_LE.
* videoio/gstreamer: added BGRA/BGRx support
Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
* VideoCapture timeout set/get
* Common formatting for enum values
* Fix enum values wrongly in videoio.hpp
* Define timeout enum values in public api and align with master
docs(core/ocl): clarify ownership of arguments passed into OpenCL related functions
* docs(core/ocl): clarify ownership in OpenCLExecutionContext::create
Although it is technically true that OpenCLExecutionContext::create
calls `clRetainContext` on its context argument, it is misleading
because it does not increase the reference count overall. Clarify that
the ownership of one reference of the passed context and device is
taken.
* docs(core/ocl): document ownership transfer in ocl::Device::fromHandle
Optimization of DNN using native RISC-V vector intrinsics.
* Use RVV to optimize fastGEMM (FP32) in DNN.
* Use RVV to optimize fastGEMM1T in DNN.
* Use RVV to optimize fastConv in DNN.
* Use RVV to optimize fastDepthwiseConv in DNN.
* Vectorize tails using vl.
* Use "vl" instead of scalar to handle small block in fastConv.
* Fix memory access out of bound in "fastGEMM1T".
* Remove setvl.
* Remove useless initialization.
* Use loop unrolling to handle tail part instead of switch.
[G-API] Support postprocessing for not argmaxed outputs
* Support postprocessing for not argmaxed outputs
* Fix typo
* Add assert
* Remove static cast
* CamelCast to snake_case
* Fix windows warning
* Add static_cast to uint8_t
* Add const to variables
Add Python's test for LSTM layer
* Add Python's test for LSTM layer
* Set different test threshold for FP16 target
* rename test to test_input_3d
Co-authored-by: Julie Bareeva <julia.bareeva@xperience.ai>
Support non-zero hidden state for LSTM
* fully support non-zero hidden state for LSTM
* check dims of hidden state for LSTM
* fix failed test Test_Model.TextRecognition
* add new tests for LSTM w/ non-zero hidden params
Co-authored-by: Julie Bareeva <julia.bareeva@xperience.ai>
bug fixes for universal intrinsics of RISC-V back-end
* Align universal intrinsic comparator behaviour with other platforms
Set all bits to one for return value of int and fp comparators.
* fix v_pack_triplets, v_pack_store and v_pack_u_store
* Remove redundant CV_DECL_ALIGNED statements
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
AArch64 semihosting
* [ts] Disable filesystem support in the TS module.
Because of this change, all the tests loading data will file, but tat
least the core module can be tested with the following line:
opencv_test_core --gtest_filter=-"*Core_InputOutput*:*Core_globbing.accuracy*"
* [aarch64] Build OpenCV for AArch64 semihosting.
This patch provide a toolchain file that allows to build the library
for semihosting applications [1]. Minimal changes have been applied to
the code to be able to compile with a baremetal toolchain.
[1] https://developer.arm.com/documentation/100863/latest
The option `CV_SEMIHOSTING` is used to guard the bits in the code that
are specific to the target.
To build the code:
cmake ../opencv/ \
-DCMAKE_TOOLCHAIN_FILE=../opencv/platforms/semihosting/aarch64-semihosting.toolchain.cmake \
-DSEMIHOSTING_TOOLCHAIN_PATH=/path/to/baremetal-toolchain/bin/ \
-DBUILD_EXAMPLES=ON -GNinja
A barematel toolchain for targeting aarch64 semihosting can be found
at [2], under `aarch64-none-elf`.
[2] https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
The folder `samples/semihosting` provides two example semihosting
applications.
The two binaries can be executed on the host platform with:
qemu-aarch64 ./bin/example_semihosting_histogram
qemu-aarch64 ./bin/example_semihosting_norm
Similarly, the test and perf executables of the modules can be run
with:
qemu-aarch64 ./bin/opecv_[test|perf]_<module>
Notice that filesystem support is disabled by the toolchain file,
hence some of the test that depend on filesystem support will fail.
* [semihosting] Remove blank like at the end of file. [NFC]
The spurious blankline was reported by
https://pullrequest.opencv.org/buildbot/builders/precommit_docs/builds/31158.
* [semihosting] Make the raw pixel file generation OS independent.
Use the facilities provided by Cmake to generate the header file
instead of a shell script, so that the build doesn't fail on systems
that do not have a unix shell.
* [semihosting] Rename variable for semihosting compilation.
* [semihosting] Move the cmake configuration to a variable file.
* [semihosting] Make the guard macro private for the core module.
* [semihosting] Remove space. [NFC]
* [semihosting] Improve comment with information about semihosting. [NFC]
* [semihosting] Update license statement on top of sourvce file. [NFC]
* [semihosting] Replace BM_SUFFIX with SEMIHOSTING_SUFFIX. [NFC]
* [semihosting] Remove double space. [NFC]
* [semihosting] Add some text output to the sample applications.
* [semihosting] Remove duplicate entry in cmake configuration. [NFCI]
* [semihosting] Replace `long` with `int` in sample apps. [NFCI]
* [semihosting] Use `configure_file` to create the random pixels. [NFCI]
* [semihosting][bugfix] Fix name of cmakedefine variable.
* [semihosting][samples] Use CV_8UC1 for grayscale images. [NFCI]
* [semihosting] Add readme file.
* [semihosting] Remove blank like at the end of README. [NFC]
This fixes the failure at
https://pullrequest.opencv.org/buildbot/builders/precommit_docs/builds/31272.
Improves support for Unix non-Linux systems, including QNX
* Fixes#20395. Improves support for Unix non-Linux systems. Focus on QNX Neutrino.
Signed-off-by: promero <promero@mathworks.com>
* Update system.cpp
MTCNN 1st pnet simplification to ensure single graph input
* 1st pnet simplification to ensure single graph input
* address comment from Dmitry M regarding unused variable
* [build][option] Introduce `OPENCV_DISABLE_THREAD_SUPPORT` option.
The option forces the library to build without thread support.
* update handling of OPENCV_DISABLE_THREAD_SUPPORT
- reduce amount of #if conditions
* [to squash] cmake: apply mode vars in toolchains too
Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
G-API: Wrap render functionality to python
* Wrap render Rect prim
* Add all primitives and tests
* Cover mosaic and image
* Handle error in pyopencv_to(Prim)
* Move Mosaic and Rect ctors wrappers to shadow file
* Use GAPI_PROP_RW
* Fix indent
* Support cl_image conversion for CL_HALF_FLOAT (float16)
* Support cl_image conversion for additional channel orders:
CL_A, CL_INTENSITY, CL_LUMINANCE, CL_RG, CL_RA
* Comment on why cl_image conversion is unsupported for CL_RGB
* Predict optimal vector width for float16
* ocl::kernelToStr: support float16
* ocl::Device::halfFPConfig: drop artificial requirement for OpenCL
version >= 1.2. Even OpenCL 1.0 supports the underlying config
property, CL_DEVICE_HALF_FP_CONFIG.
* dumpOpenCLInformation: provide info on OpenCL half-float support
and preferred half-float vector width
* randu: support default range [-1.0, 1.0] for float16
* TestBase::warmup: support float16