Updated the Windows Visual Studio Image Watch tutorial to include download links to the latest versions of Visual Studio Image Watch for newer Visual Studio versions.
The PREDEFINED setting for had a space between the define name and the equal sign and this is not allowed, it results in the warning:
```
error: Illegal PREDEFINED format '=', no define name specified
```
according to the documentation explicitly states that no space is allowed:
> The PREDEFINED tag can be used to specify one or more macro names that are defined before the preprocessor is started (similar to the -D option of e.g. gcc). The argument of the tag is a list of macros of the form: name or name=definition (no spaces). If the definition and the "=" are omitted, "=1" is assumed. To prevent a macro definition from being undefined via #undef or recursively expanded use the := operator instead of the = operator.
* Add python version of panorama_stitching_rotating_camera and perspective_correction
* Updated code
* added in the docs
* added python code in the docs
* docs change
* Add java tutorial as well
* Add toggle in documentation
* Added the link for Java code
* format code
* Refactored code
* Added java code for meanshift and optical_flow
* added java code for module video
* added appropriate spaces in codes
* converted absolute path to command line arguments
* added spaces at appropriate places
Python code examples for file IO in xml and yml format
* Initial "Pythonization" of file_input_output.cpp
* Moved file_input_output.py to correct location
* Nearly done Pythonizing file_input_output.cpp
* Python equivalent of file_input_output.py created
* Started Pythonizing camera_calibration.cpp
* Completed Python tutorial/sample code for file_input_output
* Resolved whitespace issues
* Removed tabs in file_input_output.cpp
* Patched import order and wrapped code in main function
* Changed string to docstring format in help file
* Updated link to Python example code
G-API: Tutorial: Face beautification algorithm implementation
* Introduce a tutorial on face beautification algorithm
- small typo issue in render_ocv.cpp
* Addressing comments rgarnov smirnov-alexey
* G-API-NG/Docs: Added a tutorial page on interactive face detection sample
- Introduced a "--ser" option to run the pipeline serially for
benchmarking purposes
- Reorganized sample code to better fit the documentation;
- Fixed a couple of issues (mainly typos) in the public headers
* G-API-NG/Docs: Reflected meta-less compilation in new G-API tutorial
* G-API-NG/Docs: Addressed review comments on Face Analytics Pipeline example
* G-API: Addressed various documentation issues
- Fixed various typos and missing references;
- Added brief documentaion on G_TYPED_KERNEL and G_COMPOUND_KERNEL macros;
- Briefly described GComputationT<>;
- Briefly described G-API data objects (in a group section).
* G-API: Some clean-ups in doxygen, also a chapter on Render API
* G-API: Expose more graph compilation arguments in the documentation
* G-API: Address documentation review comments
Fix an error during Windows installation caused by trying to create the already existing Build directory. Also excluding intermediate steps for Install directory creation.
[GSoC 2019] Improve the performance of JavaScript version of OpenCV (OpenCV.js)
* [GSoC 2019]
Improve the performance of JavaScript version of OpenCV (OpenCV.js):
1. Create the base of OpenCV.js performance test:
This perf test is based on benchmark.js(https://benchmarkjs.com). And first add `cvtColor`, `Resize`, `Threshold` into it.
2. Optimize the OpenCV.js performance by WASM threads:
This optimization is based on Web Worker API and SharedArrayBuffer, so it can be only used in browser.
3. Optimize the OpenCV.js performance by WASM SIMD:
Add WASM SIMD backend for OpenCV Universal Intrinsics. It's experimental as WASM SIMD is still in development.
* [GSoC2019]
1. use short license header
2. fix documentation node issue
3. remove the unused `hasSIMD128()` api
* [GSoC2019]
1. fix emscripten define
2. use fallback function for f16
* [GSoC2019]
Fix rebase issue
Merge two Haar Cascade tutorials (#14674)
* move haar cascade introduction, add code explanation, mark content as moved
* switch to ref for include to provide correct breadcrumb navigation
G-API: Kernel package design (#13851)
* Remove cv::unite_policy from API
* Add check that all id in kernel package are unique
* Refactor checker id procedure
* Remove cv::gapi::GLookupOrder from API
* Implement cv::gapi::use_only
* Fix samples
* Fix docs
* Fix comments to review
* Remove unite_policy
* Fix GKernelPackage::backends()
* Fix comments to review
* Fix all_unique
* Fix comments to review
* Fix comments to review
* Remove out of date tests
Extend optical flow tutorial (#14314)
* extend python optical flow tutorial with cpp example code and add it to general tutorial directory
* remove unused parameters, fix comparison between signed and unsigned int
* fix hsv range problem
* switch to samples::findFile for sample file location
* switch to command line parameter for path
* remove old tutorial as in 14393
* minor fixes
Extend meanshift tutorial (#14393)
* copy original tutorial and python code
* add cpp code, fix python code
* add camshift cpp code, fix bug in meanshift code
* add description to ToC page
* fix shadowing previous local declaration
* fix grammar: with -> within
* docs: remove content of old py_meanshift tutorial, add link
* docs: replace meanshift tutorial subpage in Python tutorials
* switch to ref to fix wrong breadcrumb navigation
* switch to cmdline for path as in #14314
* Apply suggestions from code review
* order programming languages alphabetically
* Created python version of the code for the anisotropic image segmentation tutorial. Created python/cpp toggles for the markdown file.
* fix doxygen warnings
Add URLs, harmonise formatting, and fix parse error in bibliography (#13228)
* Fixed parse error in bibliography
* Removed extra curly braces
* harmonized whitespace
* changed organisation -> publisher where appropriate. Organisation is intended as the author's organisation, not the publishing.
* harmonized capitalisation and whitespace
* Add links to about 1/3 of references
* G-API: First steps with tutorial
* G-API Tutorial: First iteration
* G-API port of anisotropic image segmentation tutorial;
* Currently works via OpenCV only;
* Some new kernels have been required.
* G-API Tutorial: added chapters on execution code, inspection, and profiling
* G-API Tutorial: make Fluid kernel headers public
For some reason, these headers were not moved to the public
headers subtree during the initial development. Somehow it even
worked for the existing workloads.
* G-API Tutorial: Fix a couple of issues found during the work
* Introduced Phase & Sqrt kernels, OCV & Fluid versions
* Extended GKernelPackage to allow kernel removal & policies on include()
All the above stuff needs to be tested, tests will be added later
* G-API Tutorial: added chapter on running Fluid backend
* G-API Tutorial: fix a number of issues in the text
* G-API Tutorial - some final updates
- Fixed post-merge issues after Sobel kernel renaming;
- Simplified G-API code a little bit;
- Put a conclusion note in text.
* G-API Tutorial - fix build issues in test/perf targets
Public headers were refactored but tests suites were not updated in time
* G-API Tutorial: Added tests & reference docs on new kernels
* Phase
* Sqrt
* G-API Tutorial: added link to the tutorial from the main module doc
* G-API Tutorial: Added tests on new GKernelPackage functionality
* G-API Tutorial: Extended InRange tests to cover 32F
* G-API Tutorial: Misc fixes
* Avoid building examples when gapi module is not there
* Added a volatile API disclaimer to G-API root documentation page
* G-API Tutorial: Fix perf tests build issue
This change came from master where Fluid kernels are still used
incorrectly.
* G-API Tutorial: Fixed channels support in Sqrt/Phase fluid kernels
Extended tests to cover this case
* G-API Tutorial: Fix text problems found on team review
cap_libv4l depends on an external library (libv4l) yet is still larger
(1966 loc vs 1822 loc).
It was initially introduced copy pasting cap_v4l in order to offload
various color conversions to libv4l.
However nowadays we handle most of the needed color conversions inside
OpenCV. Our own implementation is better tested and (probably) also
better performing. (as it can optionally leverage IPP/ OpenCL)
Currently cap_v4l is better maintained and generally the code is in
better shape. There is however an API
difference in getting unconverted frames:
* on cap_libv4l one need to set `CV_CAP_MODE_GRAY=1` or
`CV_CAP_MODE_YUYV=1`
* on cap_v4l one needs to set `CV_CAP_PROP_CONVERT_RGB=0`
the latter is more flexible though as it also allows accessing undecoded
JPEG images.
fixes#4563