📢 News
- [Jul. 27, 2023] 💡 Support all Huawei NPU models and building with new CANN versions. PR#23936
- [Jun. 29, 2023] 🎉 OpenCV 4.8.0 is released along with patches for CANN backend.
- [Mar. 24, 2023] 💡 Support Sub, PRelu, ConvTranspose. Add one-time warning when backend is switched back to CPU if CANN is not available. This patch will be available in 4.8.0 release. PR#23401
- [Mar. 14, 2023] 🐛 Fixed some bugs and added some new features to support most of the models in opencv_zoo. This patch will be released along with 4.8.0. Build from source with latest code to experience latest features. PR#23319
- [Dec. 28, 2022] 🎉 We released OpenCV 4.7.0 with CANN backend! PR#22634
CANN (Compute Architecture of Neural Networks), developped by Huawei, is a heterogeneous computing architecture for AI. With CANN backend in OpenCV DNN, you can run your AI models on the Ascend NPU. Learn more about Ascend NPU and the CANN library from en_doc, cn_doc. With the CANN backend we introduce in OpenCV dnn, you can easily run your deep learning models on Ascend NPU.
To use OpenCV DNN with CANN backend, read the following sections:
- Install dependencies,
- Install CANN,
- Compile OpenCV with CANN,
- Python and C++ samples
- OpenCV Zoo benchmark
Install dependencies
Before installing CANN, make sure the following packges are installed:
- Python (3.7.x, or 3.8.x, or 3.9.x)
- CMake >= 3.5.1
- make
- gcc & g++ >= 7.3.0
You could also visit this page for a detailed list of dependencies.
Multiple versions of Python
You will need to specify the Python you just installed in case there are multiple versions of Python in your computer:
# suppose Python 3.7.5 is installed in default path
export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/python3.7.5/bin:$PATH
NOTE: You could also append these lines in ~/.bashrc
so that you have the same environtment next time you open the terminal.
Install CANN
Download Ascend-cann-toolkit_{version}_{platform}.run
from https://www.hiascend.com/software/cann/community-history.
version >= 5.1.RC2.alpha008
is recommanded and tested by us.- Choose your platform.
linux-x86
andlinux-aarch64
are supported.
Follow instructions from this page (CN, EN) to install the CANN library. The links to the instruction page is for version 5.1.RC1.alpha005. You could switch to your specific version by clicking the top-left drop-down menu.
Build OpenCV with CANN
After installing CANN, you could find set_env.sh
under ${cann_install_prefix}/ascend-toolkit
. In default CANN installation, ${cann_install_prefix}
is set to /usr/local/Ascend
. Run the following command to set up CANN environment for compilation:
# replace ${cann_install_prefix} with your path
source ${cann_install_prefix}/ascend-toolkit/set_env.sh
NOTE: You could also append this line to ~/.bashrc
to have the same environment next time you open the terminal.
Compile OpenCV with CANN using the following commands:
git clone https://github.com/opencv/opencv.git
cd opencv
mkdir build
cd build
cmake -D WITH_CANN=ON \
-D BUILD_opencv_gapi=OFF \
-D CMAKE_INSTALL_PREFIX=install ..
# ensure you see 'CANN: YES' in the end of the log
# Note: you could append "-j 8" in the following command for multi-job speedup.
# More jobs are used, more memory is needed.
cmake --build . --target install
If OpenCV with Python interface is needed, use this CMake command instead:
# replace the value of PYTHON3_EXECUTABLE to your path to python binary
# replace the value of PYTHON3_LIBRARY to your path to python library (where you can find libpython3.x.so)
# replace the value of PYTHON3_INCLUDE_DIR to your path to the python include directory (where you can find Python.h)
cmake -D WITH_CANN=ON\
-D CMAKE_INSTALL_PREFIX=install \
-D BUILD_opencv_python2=OFF \
-D BUILD_opencv_python3=ON \
-D BUILD_opencv_gapi=OFF \
-D PYTHON3_EXECUTABLE=/usr/local/python3.7.5/bin/python3.7m \
-D PYTHON3_LIBRARY=/usr/local/python3.7.5/lib/libpython3.7m.so \
-D PYTHON3_INCLUDE_DIR=/usr/local/python3.7.5/include/python3.7m \
..
NOTE: If your build is failed at downloading third-party resources, such as ADE, IPP and so on, you may get some help from the third Q&A in https://github.com/opencv/opencv/wiki/FAQ#build--install.
Samples
In this section, we provide C++ and Python samples for PP-ResNet50, MobileNetV1 & YOLOX from opencv_zoo.
Get models
You could download the ONNX format of PP-ResNet50, MobileNetV1 and YOLOX from:
- PP-ResNet50: https://github.com/opencv/opencv_zoo/tree/master/models/image_classification_ppresnet
- MobileNetV1: https://github.com/opencv/opencv_zoo/tree/master/models/image_classification_mobilenet
- YOLOX: https://github.com/opencv/opencv_zoo/tree/master/models/object_detection_yolox
Tips: Visit this page to learn how to download models in the zoo.
Samples in Python
Copy and save the attached Python scripts. Instructions to run samples:
- modify the paths to image and model,
- enable the OpenCV Python interface
# Replace '/path/to' with your prefix export PYTHONPATH=/path/to/opencv/build/python_loader:$PYTHONPATH
- run samples:
python3 ppresnet50.py python3 mobilenetv1.py python3 yolox.py
Samples in C++
Copy and save the attached .cpp
files and CMakeLists.txt
. You will need to
- modify the paths to image and model in
.cpp
files, - use the following commands to build and run the sample:
# Replace `/path/to` with your prefix mkdir build && cd build CMAKE_PREFIX_PATH=/path/to/opencv/build/install cmake .. cmake --build . -j 8
- run samples:
# assume current working directory is in build ./ppresnet50 ./mobilenetv1 ./yolox
OpenCV Zoo benchmark
We tested PP-ResNet50, MobileNetV1 and YOLOX from OpenCV Zoo and the CANN backend is able to make a speedup up to 22X! Free free to try more models on the CANN backend.
Model | CANN backend | CPU Backend |
---|---|---|
PP-ResNet50 | 3.29 | 69.74 |
MobileNetV1 | 1.21 | 6.60 |
YOLOX | 12.80 | 265.90 |
Attachments
Python demos
mobilenetv1.py:
import numpy as np
import cv2 as cv
def preprocess(image):
out = image.copy()
out = cv.resize(out, (256, 256))
out = out[16:240, 16:240, :]
out = cv.dnn.blobFromImage(out, 1.0/255.0, mean=(0.485, 0.456, 0.406), swapRB=True)
out = out / np.array([0.229, 0.224, 0.225]).reshape(1, -1, 1, 1)
return out
def softmax(blob, axis=1):
out = blob.copy().astype(np.float64)
e_blob = np.exp(out)
return e_blob / np.sum(e_blob, axis=axis)
image = cv.imread("/path/to/image") # replace with the path to your image
input_blob = preprocess(image)
net = cv.dnn.readNet("/path/to/image_classification_mobilenetv1_2022apr.onnx") # replace with the path to the model
net.setPreferableBackend(cv.dnn.DNN_BACKEND_CANN)
net.setPreferableTarget(cv.dnn.DNN_TARGET_NPU)
net.setInput(input_blob)
out = net.forward()
prob = softmax(out, axis=1)
_, max_prob, _, max_loc = cv.minMaxLoc(prob)
print("cls = {}, score = {:.4f}".format(max_loc[0], max_prob))
ppresnet50.py:
import numpy as np
import cv2 as cv
def preprocess(image):
out = image.copy()
out = cv.resize(out, (256, 256))
out = out[16:240, 16:240, :]
out = cv.dnn.blobFromImage(out, 1.0/255.0, mean=(0.485, 0.456, 0.406), swapRB=True)
out = out / np.array([0.229, 0.224, 0.225]).reshape(1, -1, 1, 1)
return out
def softmax(blob, axis=1):
out = blob.copy().astype(np.float64)
e_blob = np.exp(out)
return e_blob / np.sum(e_blob, axis=axis)
image = cv.imread("/path/to/image") # replace with the path to your image
input_blob = preprocess(image)
net = cv.dnn.readNet("/path/to/image_classification_ppresnet50_2022jan.onnx") # # replace with the path to the model
net.setPreferableBackend(cv.dnn.DNN_BACKEND_CANN)
net.setPreferableTarget(cv.dnn.DNN_TARGET_NPU)
net.setInput(input_blob)
output_blob = net.forward("save_infer_model/scale_0.tmp_0")
prob = softmax(output_blob, axis=1)
_, max_prob, _, max_loc = cv.minMaxLoc(prob)
print("cls = {}, score = {:.4f}".format(max_loc[0], max_prob))
yolox.py:
import numpy as np
import cv2 as cv
def postprocess(blob, confidence_threshold=0.5, nms_threshold=0.5):
out = blob.copy()
strides = [8, 16, 32]
hsizes = [80, 40, 20]
wsizes = [80, 40, 20]
grids = []
expanded_strides = []
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
out[..., :2] = (out[..., :2] + grids) * expanded_strides
out[..., 2:4] = np.exp(out[..., 2:4]) * expanded_strides
# retrieve bboxes
bboxes = out[0, :, :4]
bboxes_xyxy = np.ones_like(bboxes) # (n, 4)
bboxes_xyxy[:, 0] = bboxes[:, 0] - bboxes[:, 2] / 2.
bboxes_xyxy[:, 1] = bboxes[:, 1] - bboxes[:, 3] / 2.
bboxes_xyxy[:, 2] = bboxes[:, 0] + bboxes[:, 2] / 2.
bboxes_xyxy[:, 3] = bboxes[:, 1] + bboxes[:, 3] / 2.
# retrieve scores
scores = out[0, :, 4:5] * out[0, :, 5:]
max_scores = np.amax(scores, axis=1)
max_scores_idx = np.argmax(scores, axis=1)
out = np.concatenate([bboxes_xyxy, max_scores[:, None], max_scores_idx[:, None]], axis=1)
# batched-nms
max_coord = bboxes_xyxy.max()
offsets = max_scores_idx * (max_coord + 1)
bboxes_for_nms = bboxes_xyxy + offsets[:, None]
keep = cv.dnn.NMSBoxes(bboxes_for_nms.tolist(), max_scores.tolist(), confidence_threshold, nms_threshold)
final_out = out[keep]
return final_out
image = cv.imread("/path/to/image") # replace with the path to your image
input_blob = cv.dnn.blobFromImage(image, size=(640, 640), swapRB=True)
net = cv.dnn.readNet("/path/to/object_detection_yolox_2022nov.onnx") # replace with the path to the model
net.setPreferableBackend(cv.dnn.DNN_BACKEND_CANN)
net.setPreferableTarget(cv.dnn.DNN_TARGET_NPU)
net.setInput(input_blob)
out = net.forward()
dets = postprocess(out)
for det in dets:
bbox = det[0:4].astype(np.int32)
score = det[4]
clsid = det[5].astype(np.int32)
print("bbox: {}, score: {:.4f}, clsid: {}".format(bbox, score, clsid))
C++ demos
CMakeLists.txt:
cmake_minimum_required(VERSION 3.5.1)
project(cann_demo)
# OpenCV
find_package(OpenCV 4.6.0 REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# PP-ResNet50
add_executable(ppresnet50 ppresnet50.cpp)
target_link_libraries(ppresnet50 ${OpenCV_LIBS})
# MobileNetV1
add_executable(mobilenetv1 mobilenetv1.cpp)
target_link_libraries(mobilenetv1 ${OpenCV_LIBS})
# YOLOX
add_executable(yolox yolox.cpp)
target_link_libraries(yolox ${OpenCV_LIBS})
mobilenetv1.cpp:
#include <iostream>
#include <vector>
#include "opencv2/opencv.hpp"
void preprocess(const cv::Mat& src, cv::Mat& dst)
{
src.convertTo(dst, CV_32FC3);
cv::cvtColor(dst, dst, cv::COLOR_BGR2RGB);
// center crop
cv::resize(dst, dst, cv::Size(256, 256));
cv::Rect roi(16, 16, 224, 224);
dst = dst(roi);
dst = cv::dnn::blobFromImage(dst, 1.0/255.0, cv::Size(), cv::Scalar(0.485, 0.456, 0.406));
cv::divide(dst, cv::Scalar(0.229, 0.224, 0.225), dst);
}
void softmax(const cv::Mat& src, cv::Mat& dst, int axis=1)
{
using namespace cv::dnn;
LayerParams lp;
Net netSoftmax;
netSoftmax.addLayerToPrev("softmaxLayer", "Softmax", lp);
netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV);
netSoftmax.setInput(src);
cv::Mat out = netSoftmax.forward();
out.copyTo(dst);
}
int main(int argc, char** argv)
{
using namespace cv;
Mat image = imread("/path/to/image"); // replace with the path to your image
Mat input_blob;
preprocess(image, input_blob);
dnn::Net net = dnn::readNet("/path/to/image_classification_mobilenetv1_2022apr.onnx"); // replace with the path to the model
net.setPreferableBackend(dnn::DNN_BACKEND_CANN);
net.setPreferableTarget(dnn::DNN_TARGET_NPU);
net.setInput(input_blob);
Mat out = net.forward();
Mat prob;
softmax(out, prob, 1);
double min_val, max_val;
Point min_loc, max_loc;
minMaxLoc(prob, &min_val, &max_val, &min_loc, &max_loc);
std::cout << cv::format("cls = %d, score = %.4f\n", max_loc.x, max_val);
return 0;
}
PP-ResNet50:
#include <iostream>
#include <vector>
#include "opencv2/opencv.hpp"
void preprocess(const cv::Mat& src, cv::Mat& dst)
{
src.convertTo(dst, CV_32FC3);
cv::cvtColor(dst, dst, cv::COLOR_BGR2RGB);
// center crop
cv::resize(dst, dst, cv::Size(256, 256));
cv::Rect roi(16, 16, 224, 224);
dst = dst(roi);
dst = cv::dnn::blobFromImage(dst, 1.0/255.0, cv::Size(), cv::Scalar(0.485, 0.456, 0.406));
cv::divide(dst, cv::Scalar(0.229, 0.224, 0.225), dst);
}
void softmax(const cv::Mat& src, cv::Mat& dst, int axis=1)
{
using namespace cv::dnn;
LayerParams lp;
Net netSoftmax;
netSoftmax.addLayerToPrev("softmaxLayer", "Softmax", lp);
netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV);
netSoftmax.setInput(src);
cv::Mat out = netSoftmax.forward();
out.copyTo(dst);
}
int main(int argc, char** argv)
{
using namespace cv;
Mat image = imread("/path/to/image"); // replace with the path to your image
Mat input_blob;
preprocess(image, input_blob);
dnn::Net net = dnn::readNet("/path/to/image_classification_ppresnet50_2022jan.onnx"); // replace with the path to the model
net.setPreferableBackend(dnn::DNN_BACKEND_CANN);
net.setPreferableTarget(dnn::DNN_TARGET_NPU);
net.setInput(input_blob);
Mat out = net.forward("save_infer_model/scale_0.tmp_0");
Mat prob;
softmax(out, prob, 1);
double min_val, max_val;
Point min_loc, max_loc;
minMaxLoc(prob, &min_val, &max_val, &min_loc, &max_loc);
std::cout << cv::format("cls = %d, score = %.4f\n", max_loc.x, max_val);
return 0;
}
yolox.cpp:
#include <iostream>
#include <vector>
#include "opencv2/opencv.hpp"
using namespace cv;
cv::Mat postprocess(const cv::Mat& blob, const float confidence_threshold = 0.5, const float nms_threshold = 0.5)
{
std::vector<int> strides{8, 16, 32};
std::vector<int> hsizes{80, 40, 20};
std::vector<int> wsizes{80, 40, 20};
std::vector<Point2f> grids(8400);
std::vector<float> expanded_strides(8400);
int i, j, k, l = 0, h, w;
for (i = 0; i < hsizes.size(); i++)
{
h = hsizes[i];
w = wsizes[i];
for (j = 0; j < h; j++)
{
for (k = 0; k < w; k++)
{
Point2f grid{float(k), float(j)};
grids[l] = grid;
expanded_strides[l] = float(strides[i]);
l++;
}
}
}
const float* p_delta = (const float*)blob.data;
Mat outs;
Mat out(1, 6, CV_32FC1);
for (i = 0; i < 8400; i++)
{
j = i * 85;
Point2f grid = grids[i];
float expanded_stride = expanded_strides[i];
// retrieve objectness score
float objectness = p_delta[j + 4];
// retrieve class scores
float max_score = -1.f;
float max_idx = -1.f;
float this_score;
for (k = 5; k < 85; k++)
{
this_score = p_delta[j + k] * objectness;
if (this_score > max_score)
{
max_score = this_score;
max_idx = k - 5;
}
}
if (max_score < 0.5)
continue;
out.at<float>(0, 4) = max_score;
out.at<float>(0, 5) = max_idx;
// retrieve bbox
float cx = (p_delta[j] + grid.x) * expanded_stride;
float cy = (p_delta[j + 1] + grid.y) * expanded_stride;
float width = std::exp(p_delta[j + 2]) * expanded_stride;
float height = std::exp(p_delta[j + 3]) * expanded_stride;
out.at<float>(0, 0) = cx - width / 2;
out.at<float>(0, 1) = cy - height / 2;
out.at<float>(0, 2) = cx + width / 2;
out.at<float>(0, 3) = cy + height / 2;
outs.push_back(out);
}
Mat dets = outs;
if (dets.rows > 1)
{
// batched nms
float max_coord = -1;
for (i = 0; i < dets.rows; i++)
for (j = 0; j < 4; j++)
if (max_coord < dets.at<float>(i, j))
max_coord = dets.at<float>(i, j);
std::vector<Rect2i> boxes;
std::vector<float> scores;
float offsets;
for (i = 0; i < dets.rows; i++)
{
offsets = dets.at<float>(i, 5) * (max_coord + 1);
boxes.push_back(
Rect2i(int(dets.at<float>(i, 0) + offsets),
int(dets.at<float>(i, 1) + offsets),
int(dets.at<float>(i, 2) + offsets),
int(dets.at<float>(i, 3) + offsets))
);
scores.push_back(dets.at<float>(i, 4));
}
std::vector<int> keep;
dnn::NMSBoxes(boxes, scores, 0.5, 0.5, keep);
Mat dets_after_nms;
for (auto idx : keep)
dets_after_nms.push_back(dets.row(idx));
dets = dets_after_nms;
}
return dets;
}
int main(int argc, char** argv)
{
Mat image = imread("/path/to/image"); // replace with the path to your image
Mat input_blob = dnn::blobFromImage(image, 1.0f, cv::Size(640, 640), cv::Scalar(), true);
dnn::Net net = dnn::readNet("/path/to/object_detection_yolox_2022nov.onnx"); // replace with the path to the model
net.setPreferableBackend(dnn::DNN_BACKEND_CANN);
net.setPreferableTarget(dnn::DNN_TARGET_NPU);
net.setInput(input_blob);
Mat out = net.forward();
Mat dets = postprocess(out);
for (int i = 0; i < dets.rows; i++)
{
int x1 = int(dets.at<float>(i, 0));
int y1 = int(dets.at<float>(i, 1));
int x2 = int(dets.at<float>(i, 2));
int y2 = int(dets.at<float>(i, 3));
float score = dets.at<float>(i, 4);
int cls = int(dets.at<float>(i, 5));
std::cout << cv::format("box [%d, %d, %d, %d], score %f, class %d\n", x1, y1, x2, y2, score, cls);
}
return 0;
}
- Home
- Deep Learning in OpenCV
- Running OpenCV on Various Platforms
- OpenCV 5
- OpenCV 4
- OpenCV 3
- Development process
- OpenCV GSoC
- Archive
© Copyright 2024, OpenCV team