2010-05-12 01:44:00 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
2014-03-28 21:41:19 +08:00
|
|
|
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
2010-05-12 01:44:00 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
2014-08-01 22:11:20 +08:00
|
|
|
#include "opencl_kernels_imgproc.hpp"
|
2014-03-28 21:41:19 +08:00
|
|
|
|
2016-12-14 22:31:41 +08:00
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp"
|
2017-12-08 21:36:24 +08:00
|
|
|
#include "filter.hpp"
|
2016-11-03 21:54:06 +08:00
|
|
|
|
2010-05-12 01:44:00 +08:00
|
|
|
/****************************************************************************************\
|
|
|
|
Sobel & Scharr Derivative Filters
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
2011-04-17 21:14:45 +08:00
|
|
|
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
|
|
|
|
int dx, int dy, bool normalize, int ktype )
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
|
|
|
const int ksize = 3;
|
|
|
|
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
2011-04-17 21:14:45 +08:00
|
|
|
_kx.create(ksize, 1, ktype, -1, true);
|
|
|
|
_ky.create(ksize, 1, ktype, -1, true);
|
|
|
|
Mat kx = _kx.getMat();
|
|
|
|
Mat ky = _ky.getMat();
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
|
|
|
|
|
|
|
|
for( int k = 0; k < 2; k++ )
|
|
|
|
{
|
|
|
|
Mat* kernel = k == 0 ? &kx : &ky;
|
|
|
|
int order = k == 0 ? dx : dy;
|
|
|
|
int kerI[3];
|
|
|
|
|
|
|
|
if( order == 0 )
|
|
|
|
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
|
|
|
|
else if( order == 1 )
|
|
|
|
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
|
|
|
|
|
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
|
|
|
|
double scale = !normalize || order == 1 ? 1. : 1./32;
|
|
|
|
temp.convertTo(*kernel, ktype, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-04-17 21:14:45 +08:00
|
|
|
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
|
|
|
|
int dx, int dy, int _ksize, bool normalize, int ktype )
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
|
|
|
int i, j, ksizeX = _ksize, ksizeY = _ksize;
|
|
|
|
if( ksizeX == 1 && dx > 0 )
|
|
|
|
ksizeX = 3;
|
|
|
|
if( ksizeY == 1 && dy > 0 )
|
|
|
|
ksizeY = 3;
|
|
|
|
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
|
|
|
|
2011-04-17 21:14:45 +08:00
|
|
|
_kx.create(ksizeX, 1, ktype, -1, true);
|
|
|
|
_ky.create(ksizeY, 1, ktype, -1, true);
|
|
|
|
Mat kx = _kx.getMat();
|
2012-10-17 15:12:04 +08:00
|
|
|
Mat ky = _ky.getMat();
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
if( _ksize % 2 == 0 || _ksize > 31 )
|
2024-03-04 20:51:05 +08:00
|
|
|
CV_Error( cv::Error::StsOutOfRange, "The kernel size must be odd and not larger than 31" );
|
2013-02-25 00:14:01 +08:00
|
|
|
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
|
|
|
|
|
|
|
|
for( int k = 0; k < 2; k++ )
|
|
|
|
{
|
|
|
|
Mat* kernel = k == 0 ? &kx : &ky;
|
|
|
|
int order = k == 0 ? dx : dy;
|
|
|
|
int ksize = k == 0 ? ksizeX : ksizeY;
|
|
|
|
|
|
|
|
CV_Assert( ksize > order );
|
|
|
|
|
|
|
|
if( ksize == 1 )
|
|
|
|
kerI[0] = 1;
|
|
|
|
else if( ksize == 3 )
|
|
|
|
{
|
|
|
|
if( order == 0 )
|
|
|
|
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
|
|
|
|
else if( order == 1 )
|
|
|
|
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
|
|
|
|
else
|
|
|
|
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int oldval, newval;
|
|
|
|
kerI[0] = 1;
|
|
|
|
for( i = 0; i < ksize; i++ )
|
|
|
|
kerI[i+1] = 0;
|
|
|
|
|
|
|
|
for( i = 0; i < ksize - order - 1; i++ )
|
|
|
|
{
|
|
|
|
oldval = kerI[0];
|
|
|
|
for( j = 1; j <= ksize; j++ )
|
|
|
|
{
|
|
|
|
newval = kerI[j]+kerI[j-1];
|
|
|
|
kerI[j-1] = oldval;
|
|
|
|
oldval = newval;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < order; i++ )
|
|
|
|
{
|
|
|
|
oldval = -kerI[0];
|
|
|
|
for( j = 1; j <= ksize; j++ )
|
|
|
|
{
|
|
|
|
newval = kerI[j-1] - kerI[j];
|
|
|
|
kerI[j-1] = oldval;
|
|
|
|
oldval = newval;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
|
|
|
|
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
|
|
|
|
temp.convertTo(*kernel, ktype, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-04-17 21:14:45 +08:00
|
|
|
}
|
2010-05-12 01:44:00 +08:00
|
|
|
|
2011-04-17 21:14:45 +08:00
|
|
|
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
|
|
|
|
int ksize, bool normalize, int ktype )
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
|
|
|
if( ksize <= 0 )
|
|
|
|
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
|
|
|
|
else
|
|
|
|
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-04-17 21:14:45 +08:00
|
|
|
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
|
|
|
|
int dx, int dy, int ksize, int borderType )
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
|
|
|
Mat kx, ky;
|
|
|
|
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
|
|
|
|
return createSeparableLinearFilter(srcType, dstType,
|
|
|
|
kx, ky, Point(-1,-1), 0, borderType );
|
|
|
|
}
|
|
|
|
|
2016-11-03 21:54:06 +08:00
|
|
|
#ifdef HAVE_OPENVX
|
|
|
|
namespace cv
|
|
|
|
{
|
2017-05-26 00:10:21 +08:00
|
|
|
namespace ovx {
|
|
|
|
template <> inline bool skipSmallImages<VX_KERNEL_SOBEL_3x3>(int w, int h) { return w*h < 320 * 240; }
|
|
|
|
}
|
2016-11-03 21:54:06 +08:00
|
|
|
static bool openvx_sobel(InputArray _src, OutputArray _dst,
|
|
|
|
int dx, int dy, int ksize,
|
|
|
|
double scale, double delta, int borderType)
|
|
|
|
{
|
2017-04-11 18:22:38 +08:00
|
|
|
if (_src.type() != CV_8UC1 || _dst.type() != CV_16SC1 ||
|
|
|
|
ksize != 3 || scale != 1.0 || delta != 0.0 ||
|
|
|
|
(dx | dy) != 1 || (dx + dy) != 1 ||
|
2017-04-11 19:15:26 +08:00
|
|
|
_src.cols() < ksize || _src.rows() < ksize ||
|
|
|
|
ovx::skipSmallImages<VX_KERNEL_SOBEL_3x3>(_src.cols(), _src.rows())
|
2017-04-11 18:22:38 +08:00
|
|
|
)
|
2016-11-03 21:54:06 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
|
|
|
|
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
|
|
|
|
return false; //Process isolated borders only
|
2016-12-21 21:19:06 +08:00
|
|
|
vx_enum border;
|
2016-11-03 21:54:06 +08:00
|
|
|
switch (borderType & ~BORDER_ISOLATED)
|
|
|
|
{
|
|
|
|
case BORDER_CONSTANT:
|
2016-12-21 21:19:06 +08:00
|
|
|
border = VX_BORDER_CONSTANT;
|
2016-11-03 21:54:06 +08:00
|
|
|
break;
|
|
|
|
case BORDER_REPLICATE:
|
2017-03-29 14:01:40 +08:00
|
|
|
// border = VX_BORDER_REPLICATE;
|
|
|
|
// break;
|
2016-11-03 21:54:06 +08:00
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
try
|
|
|
|
{
|
2017-02-14 18:32:17 +08:00
|
|
|
ivx::Context ctx = ovx::getOpenVXContext();
|
2017-03-28 23:02:42 +08:00
|
|
|
//if ((vx_size)ksize > ctx.convolutionMaxDimension())
|
|
|
|
// return false;
|
2016-11-03 21:54:06 +08:00
|
|
|
|
|
|
|
Mat a;
|
|
|
|
if (dst.data != src.data)
|
|
|
|
a = src;
|
|
|
|
else
|
|
|
|
src.copyTo(a);
|
|
|
|
|
|
|
|
ivx::Image
|
|
|
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
|
|
|
|
ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data),
|
2017-04-11 18:22:38 +08:00
|
|
|
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_S16,
|
|
|
|
ivx::Image::createAddressing(dst.cols, dst.rows, 2, (vx_int32)(dst.step)), dst.data);
|
2016-11-03 21:54:06 +08:00
|
|
|
|
|
|
|
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
|
2018-02-14 00:28:11 +08:00
|
|
|
//since OpenVX standard says nothing about thread-safety for now
|
2016-12-21 21:19:06 +08:00
|
|
|
ivx::border_t prevBorder = ctx.immediateBorder();
|
|
|
|
ctx.setImmediateBorder(border, (vx_uint8)(0));
|
2017-04-11 18:22:38 +08:00
|
|
|
if(dx)
|
|
|
|
ivx::IVX_CHECK_STATUS(vxuSobel3x3(ctx, ia, ib, NULL));
|
2016-11-03 21:54:06 +08:00
|
|
|
else
|
2017-04-11 18:22:38 +08:00
|
|
|
ivx::IVX_CHECK_STATUS(vxuSobel3x3(ctx, ia, NULL, ib));
|
2016-11-25 17:35:55 +08:00
|
|
|
ctx.setImmediateBorder(prevBorder);
|
2016-11-03 21:54:06 +08:00
|
|
|
}
|
2018-10-20 04:21:20 +08:00
|
|
|
catch (const ivx::RuntimeError & e)
|
2016-11-03 21:54:06 +08:00
|
|
|
{
|
2016-12-14 22:31:41 +08:00
|
|
|
VX_DbgThrow(e.what());
|
2016-11-03 21:54:06 +08:00
|
|
|
}
|
2018-10-20 04:21:20 +08:00
|
|
|
catch (const ivx::WrapperError & e)
|
2016-11-03 21:54:06 +08:00
|
|
|
{
|
2016-12-14 22:31:41 +08:00
|
|
|
VX_DbgThrow(e.what());
|
2016-11-03 21:54:06 +08:00
|
|
|
}
|
2016-12-14 22:31:41 +08:00
|
|
|
|
|
|
|
return true;
|
2016-11-03 21:54:06 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
significantly reduced OpenCV binary size by disabling IPP in some funcs (#13085)
* significantly reduced OpenCV binary size by disabling IPP calls in some OpenCV functions: Sobel, Scharr, medianBlur, GaussianBlur, filter2D, mean, meanStdDev, norm, sum, minMaxIdx, sort.
* re-enable IPP in norm, since it's much faster (without adding too much space overhead)
2018-11-09 22:39:29 +08:00
|
|
|
#if 0 //defined HAVE_IPP
|
2011-04-17 21:14:45 +08:00
|
|
|
namespace cv
|
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
|
|
|
|
static bool ipp_Deriv(InputArray _src, OutputArray _dst, int dx, int dy, int ksize, double scale, double delta, int borderType)
|
2014-04-14 19:47:50 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
#ifdef HAVE_IPP_IW
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION_IPP();
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
::ipp::IwiSize size(_src.size().width, _src.size().height);
|
|
|
|
IppDataType srcType = ippiGetDataType(_src.depth());
|
|
|
|
IppDataType dstType = ippiGetDataType(_dst.depth());
|
|
|
|
int channels = _src.channels();
|
|
|
|
bool useScale = false;
|
|
|
|
bool useScharr = false;
|
2014-04-14 19:47:50 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(channels != _dst.channels() || channels > 1)
|
2014-04-14 19:47:50 +08:00
|
|
|
return false;
|
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(fabs(delta) > FLT_EPSILON || fabs(scale-1) > FLT_EPSILON)
|
|
|
|
useScale = true;
|
2014-04-14 19:47:50 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(ksize <= 0)
|
2014-04-14 19:47:50 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
ksize = 3;
|
|
|
|
useScharr = true;
|
2014-04-15 17:08:02 +08:00
|
|
|
}
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
IppiMaskSize maskSize = ippiGetMaskSize(ksize, ksize);
|
2017-12-25 21:57:40 +08:00
|
|
|
if((int)maskSize < 0)
|
2014-04-14 19:47:50 +08:00
|
|
|
return false;
|
2016-09-07 23:30:17 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
#if IPP_VERSION_X100 <= 201703
|
|
|
|
// Bug with mirror wrap
|
|
|
|
if(borderType == BORDER_REFLECT_101 && (ksize/2+1 > size.width || ksize/2+1 > size.height))
|
2016-09-07 23:30:17 +08:00
|
|
|
return false;
|
2015-09-25 22:56:19 +08:00
|
|
|
#endif
|
2011-01-20 07:27:30 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
IwiDerivativeType derivType = ippiGetDerivType(dx, dy, (useScharr)?false:true);
|
2017-12-25 21:57:40 +08:00
|
|
|
if((int)derivType < 0)
|
2017-04-13 20:50:23 +08:00
|
|
|
return false;
|
2011-01-20 07:27:30 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
// Acquire data and begin processing
|
|
|
|
try
|
2014-04-14 19:47:50 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
Mat src = _src.getMat();
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
::ipp::IwiImage iwSrc = ippiGetImage(src);
|
|
|
|
::ipp::IwiImage iwDst = ippiGetImage(dst);
|
|
|
|
::ipp::IwiImage iwSrcProc = iwSrc;
|
|
|
|
::ipp::IwiImage iwDstProc = iwDst;
|
|
|
|
::ipp::IwiBorderSize borderSize(maskSize);
|
|
|
|
::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize));
|
2017-08-17 19:57:58 +08:00
|
|
|
if(!ippBorder)
|
2017-04-13 20:50:23 +08:00
|
|
|
return false;
|
2016-08-17 15:25:19 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(srcType == ipp8u && dstType == ipp8u)
|
2014-04-14 19:47:50 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
iwDstProc.Alloc(iwDst.m_size, ipp16s, channels);
|
|
|
|
useScale = true;
|
2014-04-14 19:47:50 +08:00
|
|
|
}
|
2017-04-13 20:50:23 +08:00
|
|
|
else if(srcType == ipp8u && dstType == ipp32f)
|
2014-04-14 19:47:50 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
iwSrc -= borderSize;
|
|
|
|
iwSrcProc.Alloc(iwSrc.m_size, ipp32f, channels);
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiScale, iwSrc, iwSrcProc, 1, 0, ::ipp::IwiScaleParams(ippAlgHintFast));
|
2017-04-13 20:50:23 +08:00
|
|
|
iwSrcProc += borderSize;
|
2014-03-26 20:30:48 +08:00
|
|
|
}
|
2015-09-25 22:13:11 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(useScharr)
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterScharr, iwSrcProc, iwDstProc, derivType, maskSize, ::ipp::IwDefault(), ippBorder);
|
2017-04-13 20:50:23 +08:00
|
|
|
else
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterSobel, iwSrcProc, iwDstProc, derivType, maskSize, ::ipp::IwDefault(), ippBorder);
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(useScale)
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiScale, iwDstProc, iwDst, scale, delta, ::ipp::IwiScaleParams(ippAlgHintFast));
|
2015-05-15 16:15:00 +08:00
|
|
|
}
|
2018-10-17 03:09:26 +08:00
|
|
|
catch (const ::ipp::IwException &)
|
2015-05-15 16:15:00 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
return false;
|
2015-05-15 16:15:00 +08:00
|
|
|
}
|
2017-04-13 20:50:23 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
#else
|
|
|
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(dx); CV_UNUSED(dy); CV_UNUSED(ksize); CV_UNUSED(scale); CV_UNUSED(delta); CV_UNUSED(borderType);
|
2015-05-15 16:15:00 +08:00
|
|
|
return false;
|
2017-04-13 20:50:23 +08:00
|
|
|
#endif
|
2015-05-15 16:15:00 +08:00
|
|
|
}
|
|
|
|
}
|
2011-01-20 07:27:30 +08:00
|
|
|
#endif
|
|
|
|
|
2016-10-27 12:41:40 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
static bool ocl_sepFilter3x3_8UC1(InputArray _src, OutputArray _dst, int ddepth,
|
|
|
|
InputArray _kernelX, InputArray _kernelY, double delta, int borderType)
|
|
|
|
{
|
|
|
|
const ocl::Device & dev = ocl::Device::getDefault();
|
|
|
|
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
|
|
|
|
|
|
if ( !(dev.isIntel() && (type == CV_8UC1) && (ddepth == CV_8U) &&
|
|
|
|
(_src.offset() == 0) && (_src.step() % 4 == 0) &&
|
|
|
|
(_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)) )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Mat kernelX = _kernelX.getMat().reshape(1, 1);
|
|
|
|
if (kernelX.cols % 2 != 1)
|
|
|
|
return false;
|
|
|
|
Mat kernelY = _kernelY.getMat().reshape(1, 1);
|
|
|
|
if (kernelY.cols % 2 != 1)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (ddepth < 0)
|
|
|
|
ddepth = sdepth;
|
|
|
|
|
|
|
|
Size size = _src.size();
|
|
|
|
size_t globalsize[2] = { 0, 0 };
|
|
|
|
size_t localsize[2] = { 0, 0 };
|
|
|
|
|
|
|
|
globalsize[0] = size.width / 16;
|
|
|
|
globalsize[1] = size.height / 2;
|
|
|
|
|
|
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" };
|
|
|
|
char build_opts[1024];
|
2022-06-25 11:48:22 +08:00
|
|
|
snprintf(build_opts, sizeof(build_opts), "-D %s %s%s", borderMap[borderType],
|
2016-10-27 12:41:40 +08:00
|
|
|
ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(),
|
|
|
|
ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str());
|
|
|
|
|
|
|
|
ocl::Kernel kernel("sepFilter3x3_8UC1_cols16_rows2", cv::ocl::imgproc::sepFilter3x3_oclsrc, build_opts);
|
|
|
|
if (kernel.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
UMat src = _src.getUMat();
|
|
|
|
_dst.create(size, CV_MAKETYPE(ddepth, cn));
|
|
|
|
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0))
|
|
|
|
return false;
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
|
|
|
|
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
|
|
|
|
idxArg = kernel.set(idxArg, (int)src.step);
|
|
|
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst));
|
|
|
|
idxArg = kernel.set(idxArg, (int)dst.step);
|
|
|
|
idxArg = kernel.set(idxArg, (int)dst.rows);
|
|
|
|
idxArg = kernel.set(idxArg, (int)dst.cols);
|
|
|
|
idxArg = kernel.set(idxArg, static_cast<float>(delta));
|
|
|
|
|
|
|
|
return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2011-06-06 22:51:27 +08:00
|
|
|
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
|
2011-04-17 21:14:45 +08:00
|
|
|
int ksize, double scale, double delta, int borderType )
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2020-03-21 05:04:29 +08:00
|
|
|
CV_Assert(!_src.empty());
|
|
|
|
|
2013-12-11 00:14:37 +08:00
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
2011-05-10 14:24:44 +08:00
|
|
|
if (ddepth < 0)
|
2013-12-11 00:14:37 +08:00
|
|
|
ddepth = sdepth;
|
2014-04-16 23:45:35 +08:00
|
|
|
int dtype = CV_MAKE_TYPE(ddepth, cn);
|
|
|
|
_dst.create( _src.size(), dtype );
|
2011-11-04 00:08:49 +08:00
|
|
|
|
2013-12-11 00:14:37 +08:00
|
|
|
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
Mat kx, ky;
|
|
|
|
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
|
|
|
|
if( scale != 1 )
|
|
|
|
{
|
|
|
|
// usually the smoothing part is the slowest to compute,
|
2017-08-08 23:32:04 +08:00
|
|
|
// so try to scale it instead of the faster differentiating part
|
2010-05-12 01:44:00 +08:00
|
|
|
if( dx == 0 )
|
|
|
|
kx *= scale;
|
|
|
|
else
|
|
|
|
ky *= scale;
|
|
|
|
}
|
2016-10-27 12:41:40 +08:00
|
|
|
|
2017-12-08 21:36:24 +08:00
|
|
|
CV_OCL_RUN(ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && ksize == 3 &&
|
2016-10-27 12:41:40 +08:00
|
|
|
(size_t)_src.rows() > ky.total() && (size_t)_src.cols() > kx.total(),
|
|
|
|
ocl_sepFilter3x3_8UC1(_src, _dst, ddepth, kx, ky, delta, borderType));
|
|
|
|
|
2017-12-08 21:36:24 +08:00
|
|
|
CV_OCL_RUN(ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(),
|
2018-12-17 23:09:22 +08:00
|
|
|
ocl_sepFilter2D(_src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType))
|
2017-12-08 21:36:24 +08:00
|
|
|
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
|
|
|
|
Point ofs;
|
|
|
|
Size wsz(src.cols, src.rows);
|
|
|
|
if(!(borderType & BORDER_ISOLATED))
|
|
|
|
src.locateROI( wsz, ofs );
|
|
|
|
|
|
|
|
CALL_HAL(sobel, cv_hal_sobel, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, ddepth, cn,
|
|
|
|
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, dx, dy, ksize, scale, delta, borderType&~BORDER_ISOLATED);
|
|
|
|
|
|
|
|
CV_OVX_RUN(true,
|
|
|
|
openvx_sobel(src, dst, dx, dy, ksize, scale, delta, borderType))
|
|
|
|
|
significantly reduced OpenCV binary size by disabling IPP in some funcs (#13085)
* significantly reduced OpenCV binary size by disabling IPP calls in some OpenCV functions: Sobel, Scharr, medianBlur, GaussianBlur, filter2D, mean, meanStdDev, norm, sum, minMaxIdx, sort.
* re-enable IPP in norm, since it's much faster (without adding too much space overhead)
2018-11-09 22:39:29 +08:00
|
|
|
//CV_IPP_RUN_FAST(ipp_Deriv(src, dst, dx, dy, ksize, scale, delta, borderType));
|
2017-12-08 21:36:24 +08:00
|
|
|
|
|
|
|
sepFilter2D(src, dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
|
2010-05-12 01:44:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-06-06 22:51:27 +08:00
|
|
|
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
|
2011-04-17 21:14:45 +08:00
|
|
|
double scale, double delta, int borderType )
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2020-03-21 05:04:29 +08:00
|
|
|
CV_Assert(!_src.empty());
|
|
|
|
|
2013-12-11 00:14:37 +08:00
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
2011-05-10 14:28:48 +08:00
|
|
|
if (ddepth < 0)
|
2013-12-11 00:14:37 +08:00
|
|
|
ddepth = sdepth;
|
2014-04-16 23:45:35 +08:00
|
|
|
int dtype = CV_MAKETYPE(ddepth, cn);
|
|
|
|
_dst.create( _src.size(), dtype );
|
2011-11-04 00:08:49 +08:00
|
|
|
|
2013-12-11 00:14:37 +08:00
|
|
|
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
Mat kx, ky;
|
|
|
|
getScharrKernels( kx, ky, dx, dy, false, ktype );
|
|
|
|
if( scale != 1 )
|
|
|
|
{
|
|
|
|
// usually the smoothing part is the slowest to compute,
|
2018-02-14 00:28:11 +08:00
|
|
|
// so try to scale it instead of the faster differentiating part
|
2010-05-12 01:44:00 +08:00
|
|
|
if( dx == 0 )
|
|
|
|
kx *= scale;
|
|
|
|
else
|
|
|
|
ky *= scale;
|
|
|
|
}
|
2016-10-27 12:41:40 +08:00
|
|
|
|
2017-12-08 21:36:24 +08:00
|
|
|
CV_OCL_RUN(ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 &&
|
2016-10-27 12:41:40 +08:00
|
|
|
(size_t)_src.rows() > ky.total() && (size_t)_src.cols() > kx.total(),
|
|
|
|
ocl_sepFilter3x3_8UC1(_src, _dst, ddepth, kx, ky, delta, borderType));
|
|
|
|
|
2017-12-08 21:36:24 +08:00
|
|
|
CV_OCL_RUN(ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 &&
|
|
|
|
(size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(),
|
2018-12-17 23:09:22 +08:00
|
|
|
ocl_sepFilter2D(_src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType))
|
2017-12-08 21:36:24 +08:00
|
|
|
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
|
|
|
|
Point ofs;
|
|
|
|
Size wsz(src.cols, src.rows);
|
|
|
|
if(!(borderType & BORDER_ISOLATED))
|
|
|
|
src.locateROI( wsz, ofs );
|
|
|
|
|
|
|
|
CALL_HAL(scharr, cv_hal_scharr, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, ddepth, cn,
|
|
|
|
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, dx, dy, scale, delta, borderType&~BORDER_ISOLATED);
|
|
|
|
|
significantly reduced OpenCV binary size by disabling IPP in some funcs (#13085)
* significantly reduced OpenCV binary size by disabling IPP calls in some OpenCV functions: Sobel, Scharr, medianBlur, GaussianBlur, filter2D, mean, meanStdDev, norm, sum, minMaxIdx, sort.
* re-enable IPP in norm, since it's much faster (without adding too much space overhead)
2018-11-09 22:39:29 +08:00
|
|
|
//CV_IPP_RUN_FAST(ipp_Deriv(src, dst, dx, dy, 0, scale, delta, borderType));
|
2017-12-08 21:36:24 +08:00
|
|
|
|
|
|
|
sepFilter2D( src, dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
|
2010-05-12 01:44:00 +08:00
|
|
|
}
|
|
|
|
|
2014-03-28 21:41:19 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
|
2014-06-30 14:37:41 +08:00
|
|
|
#define LAPLACIAN_LOCAL_MEM(tileX, tileY, ksize, elsize) (((tileX) + 2 * (int)((ksize) / 2)) * (3 * (tileY) + 2 * (int)((ksize) / 2)) * elsize)
|
|
|
|
|
2014-03-28 21:41:19 +08:00
|
|
|
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
|
|
|
|
const Mat & kd, const Mat & ks, double scale, double delta,
|
|
|
|
int borderType, int depth, int ddepth)
|
|
|
|
{
|
2014-06-30 14:37:41 +08:00
|
|
|
const size_t tileSizeX = 16;
|
|
|
|
const size_t tileSizeYmin = 8;
|
|
|
|
|
|
|
|
const ocl::Device dev = ocl::Device::getDefault();
|
|
|
|
|
|
|
|
int stype = _src.type();
|
|
|
|
int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), esz = CV_ELEM_SIZE(stype);
|
|
|
|
|
|
|
|
bool doubleSupport = dev.doubleFPConfig() > 0;
|
|
|
|
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Mat kernelX = kd.reshape(1, 1);
|
|
|
|
if (kernelX.cols % 2 != 1)
|
|
|
|
return false;
|
|
|
|
Mat kernelY = ks.reshape(1, 1);
|
|
|
|
if (kernelY.cols % 2 != 1)
|
|
|
|
return false;
|
|
|
|
CV_Assert(kernelX.cols == kernelY.cols);
|
|
|
|
|
|
|
|
size_t wgs = dev.maxWorkGroupSize();
|
|
|
|
size_t lmsz = dev.localMemSize();
|
|
|
|
size_t src_step = _src.step(), src_offset = _src.offset();
|
2014-09-02 21:25:25 +08:00
|
|
|
const size_t tileSizeYmax = wgs / tileSizeX;
|
2018-07-17 21:14:54 +08:00
|
|
|
CV_Assert(src_step != 0 && esz != 0);
|
2014-09-02 21:25:25 +08:00
|
|
|
|
2018-04-13 19:33:19 +08:00
|
|
|
// workaround for NVIDIA: 3 channel vector type takes 4*elem_size in local memory
|
2014-09-02 16:38:02 +08:00
|
|
|
int loc_mem_cn = dev.vendorID() == ocl::Device::VENDOR_NVIDIA && cn == 3 ? 4 : cn;
|
2014-06-30 14:37:41 +08:00
|
|
|
if (((src_offset % src_step) % esz == 0) &&
|
|
|
|
(
|
|
|
|
(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE) ||
|
2014-08-26 17:29:56 +08:00
|
|
|
((borderType == BORDER_REFLECT || borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101) &&
|
2014-09-02 21:25:25 +08:00
|
|
|
(_src.cols() >= (int) (kernelX.cols + tileSizeX) && _src.rows() >= (int) (kernelY.cols + tileSizeYmax)))
|
2014-06-30 14:37:41 +08:00
|
|
|
) &&
|
2014-09-02 21:25:25 +08:00
|
|
|
(tileSizeX * tileSizeYmin <= wgs) &&
|
2014-09-02 16:38:02 +08:00
|
|
|
(LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeYmin, kernelX.cols, loc_mem_cn * 4) <= lmsz)
|
2018-02-09 23:22:08 +08:00
|
|
|
&& OCL_PERFORMANCE_CHECK(!dev.isAMD()) // TODO FIXIT 2018: Problem with AMDGPU on Linux (2482.3)
|
2014-06-30 14:37:41 +08:00
|
|
|
)
|
|
|
|
{
|
|
|
|
Size size = _src.size(), wholeSize;
|
|
|
|
Point origin;
|
|
|
|
int dtype = CV_MAKE_TYPE(ddepth, cn);
|
|
|
|
int wdepth = CV_32F;
|
|
|
|
|
2014-09-02 21:25:25 +08:00
|
|
|
size_t tileSizeY = tileSizeYmax;
|
2014-09-02 16:38:02 +08:00
|
|
|
while ((tileSizeX * tileSizeY > wgs) || (LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeY, kernelX.cols, loc_mem_cn * 4) > lmsz))
|
2014-06-30 14:37:41 +08:00
|
|
|
{
|
|
|
|
tileSizeY /= 2;
|
|
|
|
}
|
|
|
|
size_t lt2[2] = { tileSizeX, tileSizeY};
|
|
|
|
size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] };
|
|
|
|
|
2023-04-18 14:22:59 +08:00
|
|
|
char cvt[2][50];
|
2014-06-30 14:37:41 +08:00
|
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
|
|
|
|
"BORDER_REFLECT_101" };
|
|
|
|
|
|
|
|
String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUS=%d%s%s"
|
2023-12-21 05:30:44 +08:00
|
|
|
" -D CONVERT_TO_WT=%s -D CONVERT_TO_DT=%s"
|
|
|
|
" -D %s -D SRC_T1=%s -D DST_T1=%s -D WT1=%s"
|
|
|
|
" -D SRC_T=%s -D DST_T=%s -D WT=%s"
|
2014-08-26 17:29:56 +08:00
|
|
|
" -D CN=%d ",
|
2014-06-30 14:37:41 +08:00
|
|
|
(int)lt2[0], (int)lt2[1], kernelX.cols / 2,
|
|
|
|
ocl::kernelToStr(kernelX, wdepth, "KERNEL_MATRIX_X").c_str(),
|
|
|
|
ocl::kernelToStr(kernelY, wdepth, "KERNEL_MATRIX_Y").c_str(),
|
2022-12-27 08:00:03 +08:00
|
|
|
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0], sizeof(cvt[0])),
|
|
|
|
ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1], sizeof(cvt[1])),
|
2014-08-26 17:29:56 +08:00
|
|
|
borderMap[borderType],
|
|
|
|
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), ocl::typeToStr(wdepth),
|
|
|
|
ocl::typeToStr(CV_MAKETYPE(sdepth, cn)),
|
|
|
|
ocl::typeToStr(CV_MAKETYPE(ddepth, cn)),
|
|
|
|
ocl::typeToStr(CV_MAKETYPE(wdepth, cn)),
|
2014-06-30 14:37:41 +08:00
|
|
|
cn);
|
|
|
|
|
|
|
|
ocl::Kernel k("laplacian", ocl::imgproc::laplacian5_oclsrc, opts);
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
|
|
_dst.create(size, dtype);
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
|
|
|
|
int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
|
|
|
|
int src_offset_y = static_cast<int>(src_offset / src_step);
|
|
|
|
|
|
|
|
src.locateROI(wholeSize, origin);
|
|
|
|
|
|
|
|
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
|
|
|
|
wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst),
|
|
|
|
static_cast<float>(scale), static_cast<float>(delta));
|
|
|
|
|
|
|
|
return k.run(2, gt2, lt2, false);
|
|
|
|
}
|
2014-03-28 21:41:19 +08:00
|
|
|
int iscale = cvRound(scale), idelta = cvRound(delta);
|
2014-06-30 14:37:41 +08:00
|
|
|
bool floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
|
|
|
|
int wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
|
2014-03-28 21:41:19 +08:00
|
|
|
|
|
|
|
if (!doubleSupport && wdepth == CV_64F)
|
|
|
|
return false;
|
|
|
|
|
2023-04-18 14:22:59 +08:00
|
|
|
char cvt[2][50];
|
2014-03-28 21:41:19 +08:00
|
|
|
ocl::Kernel k("sumConvert", ocl::imgproc::laplacian5_oclsrc,
|
2014-06-30 14:37:41 +08:00
|
|
|
format("-D ONLY_SUM_CONVERT "
|
2023-12-21 05:30:44 +08:00
|
|
|
"-D SRC_T=%s -D WT=%s -D DST_T=%s -D COEFF_T=%s -D WDEPTH=%d "
|
|
|
|
"-D CONVERT_TO_WT=%s -D CONVERT_TO_DT=%s%s",
|
2014-03-28 21:41:19 +08:00
|
|
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
|
|
|
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
|
|
|
|
ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)),
|
|
|
|
ocl::typeToStr(wdepth), wdepth,
|
2022-12-27 08:00:03 +08:00
|
|
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0], sizeof(cvt[0])),
|
|
|
|
ocl::convertTypeStr(wdepth, ddepth, kercn, cvt[1], sizeof(cvt[1])),
|
2014-03-28 21:41:19 +08:00
|
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
UMat d2x, d2y;
|
|
|
|
sepFilter2D(_src, d2x, depth, kd, ks, Point(-1, -1), 0, borderType);
|
|
|
|
sepFilter2D(_src, d2y, depth, ks, kd, Point(-1, -1), 0, borderType);
|
|
|
|
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
|
|
|
|
ocl::KernelArg d2xarg = ocl::KernelArg::ReadOnlyNoSize(d2x),
|
|
|
|
d2yarg = ocl::KernelArg::ReadOnlyNoSize(d2y),
|
|
|
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
|
|
|
|
|
|
|
|
if (wdepth >= CV_32F)
|
|
|
|
k.args(d2xarg, d2yarg, dstarg, (float)scale, (float)delta);
|
|
|
|
else
|
|
|
|
k.args(d2xarg, d2yarg, dstarg, iscale, idelta);
|
|
|
|
|
2015-10-16 22:10:00 +08:00
|
|
|
size_t globalsize[] = { (size_t)dst.cols * cn / kercn, (size_t)dst.rows };
|
2014-03-28 21:41:19 +08:00
|
|
|
return k.run(2, globalsize, NULL, false);
|
|
|
|
}
|
|
|
|
|
2016-10-27 14:52:26 +08:00
|
|
|
static bool ocl_Laplacian3_8UC1(InputArray _src, OutputArray _dst, int ddepth,
|
|
|
|
InputArray _kernel, double delta, int borderType)
|
|
|
|
{
|
|
|
|
const ocl::Device & dev = ocl::Device::getDefault();
|
|
|
|
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
|
|
|
|
|
|
if ( !(dev.isIntel() && (type == CV_8UC1) && (ddepth == CV_8U) &&
|
|
|
|
(borderType != BORDER_WRAP) &&
|
|
|
|
(_src.offset() == 0) && (_src.step() % 4 == 0) &&
|
|
|
|
(_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)) )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Mat kernel = _kernel.getMat().reshape(1, 1);
|
|
|
|
|
|
|
|
if (ddepth < 0)
|
|
|
|
ddepth = sdepth;
|
|
|
|
|
|
|
|
Size size = _src.size();
|
|
|
|
size_t globalsize[2] = { 0, 0 };
|
|
|
|
size_t localsize[2] = { 0, 0 };
|
|
|
|
|
|
|
|
globalsize[0] = size.width / 16;
|
|
|
|
globalsize[1] = size.height / 2;
|
|
|
|
|
|
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" };
|
|
|
|
char build_opts[1024];
|
2022-06-25 11:48:22 +08:00
|
|
|
snprintf(build_opts, sizeof(build_opts), "-D %s %s", borderMap[borderType],
|
2016-10-27 14:52:26 +08:00
|
|
|
ocl::kernelToStr(kernel, CV_32F, "KERNEL_MATRIX").c_str());
|
|
|
|
|
|
|
|
ocl::Kernel k("laplacian3_8UC1_cols16_rows2", cv::ocl::imgproc::laplacian3_oclsrc, build_opts);
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
UMat src = _src.getUMat();
|
|
|
|
_dst.create(size, CV_MAKETYPE(ddepth, cn));
|
|
|
|
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0))
|
|
|
|
return false;
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
|
|
|
|
int idxArg = k.set(0, ocl::KernelArg::PtrReadOnly(src));
|
|
|
|
idxArg = k.set(idxArg, (int)src.step);
|
|
|
|
idxArg = k.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst));
|
|
|
|
idxArg = k.set(idxArg, (int)dst.step);
|
|
|
|
idxArg = k.set(idxArg, (int)dst.rows);
|
|
|
|
idxArg = k.set(idxArg, (int)dst.cols);
|
|
|
|
idxArg = k.set(idxArg, static_cast<float>(delta));
|
|
|
|
|
|
|
|
return k.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false);
|
2014-03-28 21:41:19 +08:00
|
|
|
}
|
|
|
|
|
2016-10-27 14:52:26 +08:00
|
|
|
}
|
2014-03-28 21:41:19 +08:00
|
|
|
#endif
|
2010-05-12 01:44:00 +08:00
|
|
|
|
2015-05-15 16:15:00 +08:00
|
|
|
#if defined(HAVE_IPP)
|
|
|
|
namespace cv
|
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
|
|
|
|
static bool ipp_Laplacian(InputArray _src, OutputArray _dst, int ksize, double scale, double delta, int borderType)
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
#ifdef HAVE_IPP_IW
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION_IPP();
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
::ipp::IwiSize size(_src.size().width, _src.size().height);
|
|
|
|
IppDataType srcType = ippiGetDataType(_src.depth());
|
|
|
|
IppDataType dstType = ippiGetDataType(_dst.depth());
|
|
|
|
int channels = _src.channels();
|
|
|
|
bool useScale = false;
|
|
|
|
|
|
|
|
if(channels != _dst.channels() || channels > 1)
|
|
|
|
return false;
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(fabs(delta) > FLT_EPSILON || fabs(scale-1) > FLT_EPSILON)
|
|
|
|
useScale = true;
|
2014-10-03 19:17:28 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
IppiMaskSize maskSize = ippiGetMaskSize(ksize, ksize);
|
2017-12-25 21:57:40 +08:00
|
|
|
if((int)maskSize < 0)
|
2017-04-13 20:50:23 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
// Acquire data and begin processing
|
|
|
|
try
|
2015-05-15 16:15:00 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
Mat src = _src.getMat();
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
::ipp::IwiImage iwSrc = ippiGetImage(src);
|
|
|
|
::ipp::IwiImage iwDst = ippiGetImage(dst);
|
|
|
|
::ipp::IwiImage iwSrcProc = iwSrc;
|
|
|
|
::ipp::IwiImage iwDstProc = iwDst;
|
|
|
|
::ipp::IwiBorderSize borderSize(maskSize);
|
|
|
|
::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize));
|
2017-08-17 19:57:58 +08:00
|
|
|
if(!ippBorder)
|
2017-04-13 20:50:23 +08:00
|
|
|
return false;
|
2014-04-12 19:40:26 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
if(srcType == ipp8u && dstType == ipp8u)
|
|
|
|
{
|
|
|
|
iwDstProc.Alloc(iwDst.m_size, ipp16s, channels);
|
|
|
|
useScale = true;
|
2015-05-15 16:15:00 +08:00
|
|
|
}
|
2017-04-13 20:50:23 +08:00
|
|
|
else if(srcType == ipp8u && dstType == ipp32f)
|
2015-05-15 16:15:00 +08:00
|
|
|
{
|
2017-04-13 20:50:23 +08:00
|
|
|
iwSrc -= borderSize;
|
|
|
|
iwSrcProc.Alloc(iwSrc.m_size, ipp32f, channels);
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiScale, iwSrc, iwSrcProc, 1, 0);
|
2017-04-13 20:50:23 +08:00
|
|
|
iwSrcProc += borderSize;
|
2014-04-12 19:40:26 +08:00
|
|
|
}
|
2015-05-15 16:15:00 +08:00
|
|
|
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterLaplacian, iwSrcProc, iwDstProc, maskSize, ::ipp::IwDefault(), ippBorder);
|
2017-04-13 20:50:23 +08:00
|
|
|
|
|
|
|
if(useScale)
|
2017-08-17 19:57:58 +08:00
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiScale, iwDstProc, iwDst, scale, delta);
|
2017-04-13 20:50:23 +08:00
|
|
|
|
|
|
|
}
|
2018-10-17 03:09:26 +08:00
|
|
|
catch (const ::ipp::IwException &)
|
2017-04-13 20:50:23 +08:00
|
|
|
{
|
|
|
|
return false;
|
2014-10-03 19:17:28 +08:00
|
|
|
}
|
2015-05-15 16:15:00 +08:00
|
|
|
|
2017-04-13 20:50:23 +08:00
|
|
|
return true;
|
|
|
|
#else
|
|
|
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(scale); CV_UNUSED(delta); CV_UNUSED(borderType);
|
2015-05-15 16:15:00 +08:00
|
|
|
return false;
|
2017-04-13 20:50:23 +08:00
|
|
|
#endif
|
2015-05-15 16:15:00 +08:00
|
|
|
}
|
|
|
|
}
|
2014-04-12 19:40:26 +08:00
|
|
|
#endif
|
|
|
|
|
2015-05-15 16:15:00 +08:00
|
|
|
|
|
|
|
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
|
|
|
|
double scale, double delta, int borderType )
|
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
2016-08-18 14:53:00 +08:00
|
|
|
|
2020-03-21 05:04:29 +08:00
|
|
|
CV_Assert(!_src.empty());
|
|
|
|
|
2015-05-15 16:15:00 +08:00
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
|
|
|
if (ddepth < 0)
|
|
|
|
ddepth = sdepth;
|
|
|
|
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
|
|
|
|
|
2016-10-27 14:52:26 +08:00
|
|
|
if( ksize == 1 || ksize == 3 )
|
|
|
|
{
|
|
|
|
float K[2][9] =
|
|
|
|
{
|
|
|
|
{ 0, 1, 0, 1, -4, 1, 0, 1, 0 },
|
|
|
|
{ 2, 0, 2, 0, -8, 0, 2, 0, 2 }
|
|
|
|
};
|
|
|
|
|
|
|
|
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
|
|
|
|
if( scale != 1 )
|
|
|
|
kernel *= scale;
|
|
|
|
|
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2,
|
|
|
|
ocl_Laplacian3_8UC1(_src, _dst, ddepth, kernel, delta, borderType));
|
|
|
|
}
|
|
|
|
|
2017-11-24 22:34:02 +08:00
|
|
|
CV_IPP_RUN(!(cv::ocl::isOpenCLActivated() && _dst.isUMat()), ipp_Laplacian(_src, _dst, ksize, scale, delta, borderType));
|
2015-05-15 16:15:00 +08:00
|
|
|
|
2010-05-12 01:44:00 +08:00
|
|
|
if( ksize == 1 || ksize == 3 )
|
|
|
|
{
|
|
|
|
float K[2][9] =
|
2013-12-11 00:14:37 +08:00
|
|
|
{
|
|
|
|
{ 0, 1, 0, 1, -4, 1, 0, 1, 0 },
|
|
|
|
{ 2, 0, 2, 0, -8, 0, 2, 0, 2 }
|
|
|
|
};
|
2010-05-12 01:44:00 +08:00
|
|
|
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
|
|
|
|
if( scale != 1 )
|
|
|
|
kernel *= scale;
|
2016-10-27 14:52:26 +08:00
|
|
|
|
2013-12-11 00:14:37 +08:00
|
|
|
filter2D( _src, _dst, ddepth, kernel, Point(-1, -1), delta, borderType );
|
2010-05-12 01:44:00 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2014-03-28 21:41:19 +08:00
|
|
|
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
|
|
|
|
int wdepth = sdepth == CV_8U && ksize <= 5 ? CV_16S : sdepth <= CV_32F ? CV_32F : CV_64F;
|
|
|
|
int wtype = CV_MAKETYPE(wdepth, cn);
|
2010-05-12 01:44:00 +08:00
|
|
|
Mat kd, ks;
|
|
|
|
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
|
|
|
|
|
2014-03-28 21:41:19 +08:00
|
|
|
CV_OCL_RUN(_dst.isUMat(),
|
|
|
|
ocl_Laplacian5(_src, _dst, kd, ks, scale,
|
|
|
|
delta, borderType, wdepth, ddepth))
|
|
|
|
|
2016-10-26 19:07:41 +08:00
|
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
|
|
Point ofs;
|
|
|
|
Size wsz(src.cols, src.rows);
|
|
|
|
if(!(borderType&BORDER_ISOLATED))
|
|
|
|
src.locateROI( wsz, ofs );
|
|
|
|
borderType = (borderType&~BORDER_ISOLATED);
|
|
|
|
|
2014-03-28 21:41:19 +08:00
|
|
|
const size_t STRIPE_SIZE = 1 << 14;
|
|
|
|
Ptr<FilterEngine> fx = createSeparableLinearFilter(stype,
|
2012-10-17 15:12:04 +08:00
|
|
|
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
2014-03-28 21:41:19 +08:00
|
|
|
Ptr<FilterEngine> fy = createSeparableLinearFilter(stype,
|
2010-05-12 01:44:00 +08:00
|
|
|
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
|
|
|
|
2016-02-05 00:16:05 +08:00
|
|
|
int y = fx->start(src, wsz, ofs), dsty = 0, dy = 0;
|
|
|
|
fy->start(src, wsz, ofs);
|
2015-12-14 23:13:57 +08:00
|
|
|
const uchar* sptr = src.ptr() + src.step[0] * y;
|
2010-05-12 01:44:00 +08:00
|
|
|
|
2014-03-28 21:41:19 +08:00
|
|
|
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(CV_ELEM_SIZE(stype)*src.cols)), 1), src.rows);
|
2010-05-12 01:44:00 +08:00
|
|
|
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
|
|
|
|
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
|
|
|
|
|
|
|
|
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
|
|
|
|
{
|
2014-08-13 19:08:27 +08:00
|
|
|
fx->proceed( sptr, (int)src.step, dy0, d2x.ptr(), (int)d2x.step );
|
|
|
|
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.ptr(), (int)d2y.step );
|
2010-05-12 01:44:00 +08:00
|
|
|
if( dy > 0 )
|
|
|
|
{
|
|
|
|
Mat dstripe = dst.rowRange(dsty, dsty + dy);
|
|
|
|
d2x.rows = d2y.rows = dy; // modify the headers, which should work
|
|
|
|
d2x += d2y;
|
2014-03-28 21:41:19 +08:00
|
|
|
d2x.convertTo( dstripe, ddepth, scale, delta );
|
2010-05-12 01:44:00 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
CV_IMPL void
|
|
|
|
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
|
|
|
|
{
|
|
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
|
2011-09-29 15:32:02 +08:00
|
|
|
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
|
|
|
|
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
|
|
|
|
dst *= -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_IMPL void
|
|
|
|
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
|
|
|
|
{
|
|
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
|
2011-09-29 15:32:02 +08:00
|
|
|
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
2010-05-12 01:44:00 +08:00
|
|
|
|
|
|
|
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End of file. */
|