opencv/modules/dnn/test/test_onnx_importer.cpp

3320 lines
120 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <numeric>
namespace opencv_test { namespace {
void yoloPostProcessing(
std::vector<Mat>& outs,
std::vector<int>& keep_classIds,
std::vector<float>& keep_confidences,
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
const std::string& model_name,
const int nc=80);
template<typename TString>
static std::string _tf(TString filename, bool required = true)
{
return findDataFile(std::string("dnn/onnx/") + filename, required);
}
class Test_ONNX_layers : public DNNTestLayer
{
public:
bool required;
Test_ONNX_layers() : required(true) { }
enum Extension
{
npy,
pb
};
void testInputShapes(const Net& net, const std::vector<Mat>& inps)
{
std::vector<MatShape> inLayerShapes;
std::vector<MatShape> outLayerShapes;
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference Added int32, int64 support and type inference to dnn #24411 **Added a type inference to dnn similar to the shape inference, added int32 and int64 support.** - Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type - Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types - All layers output blobs are now allocated using the calculated types from the type inference. - Inputs and constants with int32 and int64 types are not automatically converted into float32 now. - Added int32 and int64 support for all the layers with indexing and for all the layers required in tests. Added int32 and int64 support for CUDA: - Added host<->device data moving for int32 and int64 - Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates) Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model) **CURRENT PROBLEMS**: - ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102) - I didn't add type inference and int support to VULCAN, so it doesn't work at all now. - Some layers don't support int yet, so some unknown models may not work. **CURRENT WORKAROUNDS**: - CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion) - CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion - CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion) **DISABLED TESTS**: - RAFT model **REMOVED TESTS**: - Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant) **TODO IN NEXT PULL REQUESTS**: - Add int64 support for ONNX parser - Add int support for more layers - Add int support for OCL (currently int layers just run on CPU) - Add int tests - Add int support for other backends
2024-03-01 22:07:38 +08:00
net.getLayerShapes(MatShape(), CV_32F, 0, inLayerShapes, outLayerShapes);
ASSERT_EQ(inLayerShapes.size(), inps.size());
for (int i = 0; i < inps.size(); ++i) {
bool hasDynamicShapes = inLayerShapes[i].empty();
if (hasDynamicShapes)
continue;
if (inLayerShapes[i].size() == 1) { // 1D input
ASSERT_EQ(shape(inLayerShapes[i][0]), shape(inps[i]));
} else {
// Compare all axes except batch dimension which is variable.
inLayerShapes[i][0] = inps[i].size[0];
ASSERT_EQ(inLayerShapes[i], shape(inps[i]));
}
}
}
void testONNXModels(const String& basename, const Extension ext = npy,
double l1 = 0, double lInf = 0, const bool useSoftmax = false,
bool checkNoFallbacks = true, int numInps = 1,
bool testShapes = true, bool useWinograd = true)
{
String onnxmodel = _tf("models/" + basename + ".onnx", required);
2020-03-06 04:53:50 +08:00
std::vector<Mat> inps(numInps);
Mat ref;
if (ext == npy) {
2020-03-06 04:53:50 +08:00
for (int i = 0; i < numInps; ++i)
inps[i] = blobFromNPY(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".npy"));
ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
}
else if (ext == pb) {
2020-03-06 04:53:50 +08:00
for (int i = 0; i < numInps; ++i)
inps[i] = readTensorFromONNX(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".pb"));
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb"));
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension");
2020-03-06 04:53:50 +08:00
checkBackend(&inps[0], &ref);
Net net = readNetFromONNX(onnxmodel);
ASSERT_FALSE(net.empty());
if (testShapes)
testInputShapes(net, inps);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.enableWinograd(useWinograd);
std::vector<String> inputNames;
2020-03-06 04:53:50 +08:00
for (int i = 0; i < numInps; ++i)
inputNames.push_back(format("%d", i));
net.setInputsNames(inputNames);
for (int i = 0; i < numInps; ++i)
net.setInput(inps[i], inputNames[i]);
Mat out = net.forward("");
if (useSoftmax)
{
LayerParams lp;
Net netSoftmax;
2020-03-22 23:50:15 +08:00
netSoftmax.addLayerToPrev("softmaxLayer", "Softmax", lp);
netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV);
netSoftmax.setInput(out);
out = netSoftmax.forward();
netSoftmax.setInput(ref);
ref = netSoftmax.forward();
}
if (ref.dims != out.dims) {
if (ref.dims <= 1)
ref = ref.reshape(1, out.rows);
if (out.dims <= 1)
out = out.reshape(1, ref.rows);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
{
l1 = std::max(l1, 1.4e-3);
lInf = std::max(lInf, 8e-3);
}
normAssert(ref, out, basename.c_str(), l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
if (checkNoFallbacks)
expectNoFallbacksFromIE(net);
}
};
TEST_P(Test_ONNX_layers, InstanceNorm)
{
if (target == DNN_TARGET_MYRIAD)
testONNXModels("instancenorm", npy, 0, 0, false, false);
else
testONNXModels("instancenorm", npy);
}
TEST_P(Test_ONNX_layers, MaxPooling)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
testONNXModels("maxpooling", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, MaxPooling_2)
{
testONNXModels("two_maxpooling", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, Convolution)
{
testONNXModels("convolution");
testONNXModels("conv_asymmetric_pads");
}
TEST_P(Test_ONNX_layers, Convolution_variable_weight)
{
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported
String basename = "conv_variable_w";
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
for (int i = 0; i < 2; i++)
{
Mat input = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_0.npy"));
Mat weights = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_1.npy"));
Mat ref = blobFromNPY(_tf("data/output_" + basename + format("_%d", i) + ".npy"));
net.setInput(input, "0");
net.setInput(weights, "1");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
}
}
TEST_P(Test_ONNX_layers, Convolution_variable_weight_bias)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// openvino/src/plugins/intel_myriad/common/src/ngraph/transformations/extract_dynamic_batch/slice_convolution.cpp:14 Expecting operation v1::GroupConvolution GroupConvolution_6904725 (Reshape_17[0]:f32{1,4,5,5}, Reshape_6904719[0]:f32{4,1,1,2,2}) -> (f32{1,4,4,4}) to have constant kernel, got Reshape_6904719[0]:f32{4,1,1,2,2}
// openvino\src\plugins\intel_myriad\common\src\ngraph\transformations\extract_dynamic_batch\slice_convolution.cpp:15 Expecting operation v1::GroupConvolution GroupConvolution_6904692 (Reshape_17[0]:f32{1,4,5,5}, Reshape_6904686[0]:f32{4,1,1,2,2}) -> (f32{1,4,4,4}) to have constant kernel, got Reshape_6904686[0]:f32{4,1,1,2,2}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
// accuracy (depends on OpenCL version / HW)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#elif defined(INF_ENGINE_RELEASE)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU &&
getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // supports only <= 2 inputs
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported
String basename = "conv_variable_wb";
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
for (int i = 0; i < 2; i++)
{
Mat input = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_0.npy"));
Mat weights = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_1.npy"));
Mat bias = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_2.npy"));
Mat ref = blobFromNPY(_tf("data/output_" + basename + format("_%d", i) + ".npy"));
net.setInput(input, "0");
net.setInput(weights, "1");
net.setInput(bias, "bias");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
}
}
2020-07-20 17:04:20 +08:00
TEST_P(Test_ONNX_layers, Gather)
{
2022-03-16 23:41:39 +08:00
testONNXModels("gather", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, Gather_Scalar)
{
2022-03-16 23:41:39 +08:00
testONNXModels("gather_scalar", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, GatherMulti)
{
2020-07-20 17:04:20 +08:00
// GPU plugin unsupported slice for constant
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
2022-03-16 23:41:39 +08:00
testONNXModels("gather_multi", npy, 0, 0, false, false);
2020-07-20 17:04:20 +08:00
}
2023-09-28 11:50:21 +08:00
TEST_P(Test_ONNX_layers, Gather_shared_indices) {
testONNXModels("gather_shared_indices", npy, 0, 0, false, false, 1);
}
TEST_P(Test_ONNX_layers, Two_resizes_with_shared_subgraphs) {
testONNXModels("two_resizes_with_shared_subgraphs", npy, 0, 0, false, false, 3, /*testShapes*/ false);
}
TEST_P(Test_ONNX_layers, Convolution3D)
{
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
{
// CUDA_FP16: cuDNN did not return a suitable algorithm for convolution.
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
}
testONNXModels("conv3d");
}
TEST_P(Test_ONNX_layers, Convolution3D_bias)
{
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
{
// CUDA_FP16: cuDNN did not return a suitable algorithm for convolution.
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
}
testONNXModels("conv3d_bias");
testONNXModels("conv3d_depthwise_bias"); // kernel 1x1
}
TEST_P(Test_ONNX_layers, Two_convolution)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
#endif
// Reference output values are in range [-0.855, 0.611]
testONNXModels("two_convolution");
}
TEST_P(Test_ONNX_layers, Deconvolution)
{
testONNXModels("deconvolution", npy, 0, 0, false, false);
testONNXModels("two_deconvolution", npy, 0, 0, false, false);
testONNXModels("deconvolution_group", npy, 0, 0, false, false);
testONNXModels("deconvolution_output_shape", npy, 0, 0, false, false);
if (target != DNN_TARGET_CUDA_FP16) // bug
testONNXModels("deconv_adjpad_2d", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, Deconvolution3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "2":
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2":
// [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
if (backend == DNN_BACKEND_OPENCV)
throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("deconv3d");
}
TEST_P(Test_ONNX_layers, Deconvolution3D_bias)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "3":
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 3@weights Const data got different desc and content byte sizes (270 and 810 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2":
// [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
if (backend == DNN_BACKEND_OPENCV)
throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("deconv3d_bias");
}
TEST_P(Test_ONNX_layers, Deconvolution3D_pad)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "3":
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 3@weights Const data got different desc and content byte sizes (108 and 432 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2":
// [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
if (backend == DNN_BACKEND_OPENCV)
throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("deconv3d_pad");
}
TEST_P(Test_ONNX_layers, Deconvolution3D_adjpad)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "3":
// [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 3@weights Const data got different desc and content byte sizes (90 and 180 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2":
// [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
if (backend == DNN_BACKEND_OPENCV)
throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("deconv3d_adjpad");
}
TEST_P(Test_ONNX_layers, Dropout)
{
testONNXModels("dropout");
}
TEST_P(Test_ONNX_layers, Linear)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
testONNXModels("linear");
}
TEST_P(Test_ONNX_layers, ReLU)
{
testONNXModels("ReLU");
}
TEST_P(Test_ONNX_layers, PReLU)
{
testONNXModels("PReLU_slope");
}
TEST_P(Test_ONNX_layers, Clip)
{
testONNXModels("clip", npy);
}
TEST_P(Test_ONNX_layers, Clip_init)
{
testONNXModels("clip_init_min_max");
testONNXModels("clip_init_min");
testONNXModels("clip_init_max");
}
TEST_P(Test_ONNX_layers, Shape)
{
testONNXModels("shape_of_constant");
}
TEST_P(Test_ONNX_layers, ReduceMean)
{
testONNXModels("reduce_mean");
testONNXModels("reduce_mean_axis1");
testONNXModels("reduce_mean_axis2");
}
TEST_P(Test_ONNX_layers, ReduceSum)
{
testONNXModels("reduce_sum");
testONNXModels("reduce_sum_axis_dynamic_batch");
}
TEST_P(Test_ONNX_layers, ReduceMax)
2020-09-09 15:40:02 +08:00
{
testONNXModels("reduce_max");
}
TEST_P(Test_ONNX_layers, ReduceMax_axis_0)
{
testONNXModels("reduce_max_axis_0");
}
TEST_P(Test_ONNX_layers, ReduceMax_axis_1)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// [ GENERAL_ERROR ] AssertionFailed: !out.networkInputs.empty()
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
testONNXModels("reduce_max_axis_1");
2020-09-09 15:40:02 +08:00
}
TEST_P(Test_ONNX_layers, Min)
{
testONNXModels("min", npy, 0, 0, false, true, 2);
}
2021-12-07 00:33:59 +08:00
TEST_P(Test_ONNX_layers, ArgLayer)
{
if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported"); // FIXIT use tags
testONNXModels("argmax");
testONNXModels("argmin");
}
TEST_P(Test_ONNX_layers, Scale)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// accuracy (inf/nan)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// accuracy
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
// IE exception: mkldnn_node.cpp:238 Ngraph operation Reshape with name ReduceMean_0 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// Ngraph operation Reshape with name ReduceMean_0 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
testONNXModels("scale");
}
TEST_P(Test_ONNX_layers, Scale_broadcast)
{
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // doesn't support broadcasting
testONNXModels("scale_broadcast", npy, 0, 0, false, true, 3);
}
TEST_P(Test_ONNX_layers, Scale_broadcast_mid)
{
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // doesn't support broadcasting
testONNXModels("scale_broadcast_mid", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, ReduceMean3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
#endif
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("reduce_mean3d");
}
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid)
{
testONNXModels("maxpooling_sigmoid");
}
TEST_P(Test_ONNX_layers, Cast)
{
testONNXModels("cast");
}
2020-08-24 15:46:53 +08:00
TEST_P(Test_ONNX_layers, Power)
{
testONNXModels("pow2", npy, 0, 0, false, false);
}
2021-02-21 00:46:00 +08:00
TEST_P(Test_ONNX_layers, Exp)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("exp");
}
TEST_P(Test_ONNX_layers, Elementwise_Ceil)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("ceil");
}
TEST_P(Test_ONNX_layers, Elementwise_Floor)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("floor");
}
TEST_P(Test_ONNX_layers, Elementwise_Log)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("log");
}
TEST_P(Test_ONNX_layers, Elementwise_Round)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("round");
}
TEST_P(Test_ONNX_layers, Elementwise_Sqrt)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
testONNXModels("sqrt");
#endif
}
TEST_P(Test_ONNX_layers, Elementwise_not)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("not");
}
TEST_P(Test_ONNX_layers, Compare_EQ)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("equal");
}
TEST_P(Test_ONNX_layers, Compare_GT)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("greater");
}
TEST_P(Test_ONNX_layers, Compare_LT)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("less");
}
TEST_P(Test_ONNX_layers, Compare_GTorEQ)
{
testONNXModels("greater_or_equal");
}
TEST_P(Test_ONNX_layers, Compare_LEorEQ)
{
testONNXModels("less_or_equal");
}
TEST_P(Test_ONNX_layers, CompareSameDims_EQ)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("equal_same_dims", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, CompareSameDims_GT)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("greater_same_dims", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, CompareSameDims_LT)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: Function contains several inputs and outputs with one friendly name!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
testONNXModels("less_same_dims", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Concatenation)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
testONNXModels("concatenation");
testONNXModels("concat_const_blobs");
}
TEST_P(Test_ONNX_layers, CumSumExclusiveInplace)
{
testONNXModels("cumsum_exclusive_inplace");
}
TEST_P(Test_ONNX_layers, RangeFloat)
{
testONNXModels("range_float");
testONNXModels("range_float_negative");
}
TEST_P(Test_ONNX_layers, RangeInt32)
{
testONNXModels("range_int32");
testONNXModels("range_int32_negative");
}
TEST_P(Test_ONNX_layers, RangeInt64)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // OpenVINO uses int32 precision for int64 operations
testONNXModels("range_int64");
testONNXModels("range_int64_negative");
}
TEST_P(Test_ONNX_layers, Eltwise3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
#endif
testONNXModels("eltwise3d");
}
TEST_P(Test_ONNX_layers, AveragePooling)
{
testONNXModels("average_pooling");
}
TEST_P(Test_ONNX_layers, MaxPooling3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// accuracy
if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: [ GENERAL_ERROR ] AssertionFailed: !expired()
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// accuracy
if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
// IE exception: [ GENERAL_ERROR ] AssertionFailed: !expired()
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
#endif
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("max_pool3d", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, AvePooling3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
#endif
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
testONNXModels("ave_pool3d");
}
TEST_P(Test_ONNX_layers, PoolConv3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
#endif
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
{
// CUDA_FP16: cuDNN did not return a suitable algorithm for convolution.
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
}
testONNXModels("pool_conv_3d");
}
TEST_P(Test_ONNX_layers, BatchNormalization)
{
testONNXModels("batch_norm");
}
2019-04-29 15:29:34 +08:00
TEST_P(Test_ONNX_layers, BatchNormalization3D)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
2019-04-29 15:29:34 +08:00
testONNXModels("batch_norm_3d");
}
2020-03-20 00:52:36 +08:00
TEST_P(Test_ONNX_layers, BatchNormalizationUnfused)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
#endif
2020-03-20 00:52:36 +08:00
testONNXModels("frozenBatchNorm2d");
}
TEST_P(Test_ONNX_layers, BatchNormalizationSubgraph)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
#endif
testONNXModels("batch_norm_subgraph");
}
2021-02-01 17:38:33 +08:00
TEST_P(Test_ONNX_layers, NormalizeFusionSubgraph)
{
testONNXModels("normalize_fusion");
}
TEST_P(Test_ONNX_layers, Transpose)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
testONNXModels("transpose");
}
TEST_P(Test_ONNX_layers, Multiplication)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("mul");
}
TEST_P(Test_ONNX_layers, MatMul_2d)
{
testONNXModels("matmul_2d");
}
TEST_P(Test_ONNX_layers, MatMul_3d)
{
testONNXModels("matmul_3d");
}
TEST_P(Test_ONNX_layers, MatMul_4d)
{
testONNXModels("matmul_4d");
}
TEST_P(Test_ONNX_layers, MatMul_2d_init)
{
testONNXModels("matmul_2d_init");
}
TEST_P(Test_ONNX_layers, MatMul_3d_init)
{
testONNXModels("matmul_3d_init");
}
TEST_P(Test_ONNX_layers, MatMul_4d_init)
{
testONNXModels("matmul_4d_init");
}
TEST_P(Test_ONNX_layers, MatMul_init_2)
{
testONNXModels("matmul_init_2");
}
TEST_P(Test_ONNX_layers, MatMul_init_bcast)
{
testONNXModels("matmul_init_bcast");
}
2024-08-15 16:10:40 +08:00
TEST_P(Test_ONNX_layers, MatMul_bcast_3dx2d) {
testONNXModels("matmul_bcast");
}
2020-08-12 20:03:46 +08:00
TEST_P(Test_ONNX_layers, MatMulAdd)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// accuracy
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021010000)
2020-08-12 20:03:46 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
#endif
2020-08-12 20:03:46 +08:00
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
testONNXModels("matmul_add");
}
TEST_P(Test_ONNX_layers, Expand)
{
testONNXModels("expand");
}
TEST_P(Test_ONNX_layers, ExpandIdentity) {
testONNXModels("expand_identity");
}
TEST_P(Test_ONNX_layers, ExpandBatch) {
testONNXModels("expand_batch");
}
TEST_P(Test_ONNX_layers, ExpandChannels) {
testONNXModels("expand_channels");
}
TEST_P(Test_ONNX_layers, ExpandNegBatch) {
testONNXModels("expand_neg_batch");
}
TEST_P(Test_ONNX_layers, ExpandHW)
{
2020-05-12 20:50:31 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("expand_hw");
}
TEST_P(Test_ONNX_layers, Constant)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
testONNXModels("constant");
}
2018-10-31 23:24:05 +08:00
TEST_P(Test_ONNX_layers, Padding)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
testONNXModels("padding", npy, 0, 0, false, false);
#else
2018-10-31 23:24:05 +08:00
testONNXModels("padding");
#endif
2018-10-31 23:24:05 +08:00
}
TEST_P(Test_ONNX_layers, Resize)
{
testONNXModels("resize_nearest");
testONNXModels("tf_half_pixel_for_nn");
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("resize_bilinear");
}
2020-02-13 20:02:35 +08:00
TEST_P(Test_ONNX_layers, ResizeUnfused)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
2020-03-01 17:39:15 +08:00
testONNXModels("upsample_unfused_torch1.2");
2020-02-13 20:02:35 +08:00
testONNXModels("upsample_unfused_opset9_torch1.4");
testONNXModels("resize_nearest_unfused_opset11_torch1.4");
testONNXModels("resize_nearest_unfused_opset11_torch1.3");
testONNXModels("resize_bilinear_unfused_opset11_torch1.4");
2020-02-13 20:02:35 +08:00
}
2020-03-20 00:52:36 +08:00
TEST_P(Test_ONNX_layers, ResizeUnfusedTwoInputs)
{
2023-10-05 17:51:55 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000)
2020-03-20 00:52:36 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
2023-10-05 17:51:55 +08:00
#endif
2020-03-20 00:52:36 +08:00
testONNXModels("upsample_unfused_two_inputs_opset9_torch1.4", npy, 0, 0, false, true, 2);
testONNXModels("upsample_unfused_two_inputs_opset11_torch1.4", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, MultyInputs)
{
2020-03-06 04:53:50 +08:00
testONNXModels("multy_inputs", npy, 0, 0, false, true, 2);
}
2020-03-06 04:53:50 +08:00
TEST_P(Test_ONNX_layers, Broadcast)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("channel_broadcast", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, DynamicResize)
{
testONNXModels("dynamic_resize_9", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_10", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_11", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_13", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_scale_9", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_scale_10", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_scale_11", npy, 0, 0, false, true, 2);
testONNXModels("dynamic_resize_scale_13", npy, 0, 0, false, true, 2);
testONNXModels("resize_size_opset11");
testONNXModels("resize_size_opset13");
}
TEST_P(Test_ONNX_layers, Resize_HumanSeg)
{
testONNXModels("resize_humanseg");
}
TEST_P(Test_ONNX_layers, Div)
{
const String model = _tf("models/div.onnx");
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
// Reference output values range is -68.80928, 2.991873. So to avoid computational
// difference for FP16 we'll perform reversed division (just swap inputs).
Mat inp1 = blobFromNPY(_tf("data/input_div_1.npy"));
Mat inp2 = blobFromNPY(_tf("data/input_div_0.npy"));
Mat ref = blobFromNPY(_tf("data/output_div.npy"));
cv::divide(1.0, ref, ref);
checkBackend(&inp1, &ref);
net.setInput(inp1, "0");
net.setInput(inp2, "1");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
// NaryEltwise layer suuports only CPU for now
testONNXModels("div_test_1x1", npy, 0, 0, false, false, 2);
}
2018-12-12 22:36:17 +08:00
TEST_P(Test_ONNX_layers, DynamicReshape)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
2018-12-12 22:36:17 +08:00
testONNXModels("dynamic_reshape");
testONNXModels("dynamic_reshape_opset_11");
testONNXModels("flatten_by_prod");
testONNXModels("flatten_const");
2018-12-12 22:36:17 +08:00
}
TEST_P(Test_ONNX_layers, Reshape)
{
testONNXModels("unsqueeze");
2021-09-17 20:10:57 +08:00
testONNXModels("unsqueeze_opset_13");
}
TEST_P(Test_ONNX_layers, Unsqueeze_Neg_Axes)
{
testONNXModels("unsqueeze_neg_axes");
}
TEST_P(Test_ONNX_layers, Squeeze)
{
2020-03-22 21:04:30 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("squeeze");
testONNXModels("squeeze_axes_op13");
}
TEST_P(Test_ONNX_layers, ReduceL2)
{
testONNXModels("reduceL2");
testONNXModels("reduceL2_subgraph");
testONNXModels("reduceL2_subgraph_2");
testONNXModels("reduceL2_subgraph2_2");
}
TEST_P(Test_ONNX_layers, Split)
{
2023-10-05 17:51:55 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
2023-10-05 17:51:55 +08:00
#endif
testONNXModels("split_0");
testONNXModels("split_1");
testONNXModels("split_2");
testONNXModels("split_3");
testONNXModels("split_4");
testONNXModels("split_5");
testONNXModels("split_6");
testONNXModels("split_neg_axis");
}
// Mul inside with 0-d tensor, output should be A x 1, but is 1 x A. PR #22652
TEST_P(Test_ONNX_layers, DISABLED_Split_sizes_0d)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
testONNXModels("split_sizes");
}
TEST_P(Test_ONNX_layers, Slice)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
testONNXModels("slice", npy, 0, 0, false, false);
#else
testONNXModels("slice");
testONNXModels("slice_neg_starts");
testONNXModels("slice_opset_11");
testONNXModels("slice_neg_steps", pb);
#endif
}
TEST_P(Test_ONNX_layers, Slice_Steps_2DInput)
{
testONNXModels("slice_opset_11_steps_2d");
}
TEST_P(Test_ONNX_layers, Slice_Steps_3DInput)
{
testONNXModels("slice_opset_11_steps_3d");
}
TEST_P(Test_ONNX_layers, Slice_Steps_4DInput)
{
testONNXModels("slice_opset_11_steps_4d");
}
TEST_P(Test_ONNX_layers, Slice_Steps_5DInput)
{
testONNXModels("slice_opset_11_steps_5d");
}
TEST_P(Test_ONNX_layers, Slice_Nonseq_Axes)
{
testONNXModels("slice_nonseq_axes");
testONNXModels("slice_nonseq_axes_steps");
testONNXModels("slice_nonseq_miss_axes_steps");
}
TEST_P(Test_ONNX_layers, Slice_Neg_Axes)
{
testONNXModels("slice_neg_axes");
testONNXModels("slice_neg_axes_steps");
testONNXModels("slice_neg_miss_axes_steps");
}
TEST_P(Test_ONNX_layers, Softmax)
{
testONNXModels("softmax");
2019-04-30 20:33:32 +08:00
testONNXModels("log_softmax", npy, 0, 0, false, false);
2020-01-06 19:03:05 +08:00
testONNXModels("softmax_unfused");
}
TEST_P(Test_ONNX_layers, Split_EltwiseMax)
{
2023-10-05 17:51:55 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
2023-10-05 17:51:55 +08:00
#endif
testONNXModels("split_max");
}
TEST_P(Test_ONNX_layers, LSTM_Activations)
{
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // TODO: fix this test for OpenVINO
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Node Block1326/lstm/reshape_0/permute was not assigned on any pointed device
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE Exception: Ngraph operation Reshape with name Block1237_Output_0_before_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
testONNXModels("lstm_cntk_tanh", pb, 0, 0, false, false);
}
// disabled due to poor handling of 1-d mats
TEST_P(Test_ONNX_layers, DISABLED_LSTM)
2020-03-16 03:33:05 +08:00
{
2020-03-22 21:04:30 +08:00
testONNXModels("lstm", npy, 0, 0, false, false);
2020-03-16 03:33:05 +08:00
}
// disabled due to poor handling of 1-d mats
TEST_P(Test_ONNX_layers, DISABLED_LSTM_bidirectional)
2020-03-22 05:20:36 +08:00
{
2020-03-22 21:04:30 +08:00
testONNXModels("lstm_bidirectional", npy, 0, 0, false, false);
2020-03-22 05:20:36 +08:00
}
TEST_P(Test_ONNX_layers, LSTM_hidden)
{
testONNXModels("hidden_lstm", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_hidden_bidirectional)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Node Transpose_45 was not assigned on any pointed device.
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
testONNXModels("hidden_lstm_bi", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, GRU)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Node GRU_22 was not assigned on any pointed device
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
testONNXModels("gru", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, gru_cell_batchsize_50_seqlen_1)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Node GRU_22 was not assigned on any pointed device
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("gru_cell_batchsize_50_seqlen_1", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, gru_cell_batchsize_5_seqlen_5)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Node GRU_22 was not assigned on any pointed device
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("gru_cell_batchsize_5_seqlen_5", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, gru_cell_batchsize_1_seqlen_50)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Node GRU_22 was not assigned on any pointed device
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("gru_cell_batchsize_1_seqlen_50", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, GRU_bidirectional)
{
testONNXModels("gru_bi", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_cell_forward)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// accuracy!
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// Ngraph operation Reshape with name LSTM_16/lstm_y/reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
testONNXModels("lstm_cell_forward", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_cell_bidirectional)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// Ngraph operation Reshape with name LSTM_16/lstm_y/reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
testONNXModels("lstm_cell_bidirectional", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_cell_with_peepholes)
{
testONNXModels("lstm_cell_with_peepholes", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_cell_batchsize_50_seqlen_1)
{
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lstm_cell_batchsize_50_seqlen_1", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_cell_batchsize_1_seqlen_50)
{
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lstm_cell_batchsize_1_seqlen_50", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_cell_batchsize_5_seqlen_5)
{
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lstm_cell_batchsize_5_seqlen_5", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_init_h0_c0)
{
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lstm_init_h0_c0", npy, 0, 0, false, false, 3);
}
// epsilon is larger because onnx does not match with torch/opencv exactly
TEST_P(Test_ONNX_layers, LSTM_layout_seq)
{
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lstm_layout_0", npy, 0.005, 0.005, false, false, 3);
}
// epsilon is larger because onnx does not match with torch/opencv exactly
TEST_P(Test_ONNX_layers, LSTM_layout_batch)
{
if(backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lstm_layout_1", npy, 0.005, 0.005, false, false, 3);
}
2024-01-09 02:34:47 +08:00
TEST_P(Test_ONNX_layers, Einsum_1D)
Merge pull request #24037 from Abdurrahheem:ash/dev_einsum Add Support for Einsum Layer #24037 ### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress). This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra **DONE**: - [x] 2-5D GMM support added - [x] Matrix transpose support added - [x] Reduction type comupte 'ij->j' - [x] 2nd shape computation - during forward **Next PRs**: - [ ] Broadcasting reduction "...ii ->...i" - [ ] Add lazy shape deduction. "...ij, ...jk->...ik" - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize **Later in 5.x version (requires support for 1D matrices)**: - [ ] Add 1D vector multiplication support - [ ] Inter product "i, i" (problems with 1D shapes) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-22 16:25:02 +08:00
{
testONNXModels("einsum_1d", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_2D)
{
testONNXModels("einsum_2d", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_2D_Ellipses)
{
2024-03-29 14:40:03 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
testONNXModels("einsum_2d_ellipses", npy, 0, 0, false, false, 2);
}
Merge pull request #24037 from Abdurrahheem:ash/dev_einsum Add Support for Einsum Layer #24037 ### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress). This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra **DONE**: - [x] 2-5D GMM support added - [x] Matrix transpose support added - [x] Reduction type comupte 'ij->j' - [x] 2nd shape computation - during forward **Next PRs**: - [ ] Broadcasting reduction "...ii ->...i" - [ ] Add lazy shape deduction. "...ij, ...jk->...ik" - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize **Later in 5.x version (requires support for 1D matrices)**: - [ ] Add 1D vector multiplication support - [ ] Inter product "i, i" (problems with 1D shapes) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-22 16:25:02 +08:00
TEST_P(Test_ONNX_layers, Einsum_3D)
{
testONNXModels("einsum_3d", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_4D)
{
testONNXModels("einsum_4d", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_5D)
{
testONNXModels("einsum_5d", npy, 0, 0, false, false, 2);
}
2024-01-15 22:23:10 +08:00
// https://github.com/opencv/opencv/issues/24883
2024-01-23 00:10:34 +08:00
TEST_P(Test_ONNX_layers, Einsum_InnerProduct)
Merge pull request #24037 from Abdurrahheem:ash/dev_einsum Add Support for Einsum Layer #24037 ### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress). This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra **DONE**: - [x] 2-5D GMM support added - [x] Matrix transpose support added - [x] Reduction type comupte 'ij->j' - [x] 2nd shape computation - during forward **Next PRs**: - [ ] Broadcasting reduction "...ii ->...i" - [ ] Add lazy shape deduction. "...ij, ...jk->...ik" - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize **Later in 5.x version (requires support for 1D matrices)**: - [ ] Add 1D vector multiplication support - [ ] Inter product "i, i" (problems with 1D shapes) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-22 16:25:02 +08:00
{
testONNXModels("einsum_inner", npy, 0, 0, false, false, 2);
}
2024-01-09 02:34:47 +08:00
TEST_P(Test_ONNX_layers, Einsum_HadamardProduct)
Merge pull request #24037 from Abdurrahheem:ash/dev_einsum Add Support for Einsum Layer #24037 ### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress). This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra **DONE**: - [x] 2-5D GMM support added - [x] Matrix transpose support added - [x] Reduction type comupte 'ij->j' - [x] 2nd shape computation - during forward **Next PRs**: - [ ] Broadcasting reduction "...ii ->...i" - [ ] Add lazy shape deduction. "...ij, ...jk->...ik" - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize **Later in 5.x version (requires support for 1D matrices)**: - [ ] Add 1D vector multiplication support - [ ] Inter product "i, i" (problems with 1D shapes) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-22 16:25:02 +08:00
{
testONNXModels("einsum_hadamard", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_Batch_Diagonal)
Merge pull request #24037 from Abdurrahheem:ash/dev_einsum Add Support for Einsum Layer #24037 ### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress). This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra **DONE**: - [x] 2-5D GMM support added - [x] Matrix transpose support added - [x] Reduction type comupte 'ij->j' - [x] 2nd shape computation - during forward **Next PRs**: - [ ] Broadcasting reduction "...ii ->...i" - [ ] Add lazy shape deduction. "...ij, ...jk->...ik" - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize **Later in 5.x version (requires support for 1D matrices)**: - [ ] Add 1D vector multiplication support - [ ] Inter product "i, i" (problems with 1D shapes) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-22 16:25:02 +08:00
{
2024-03-29 14:40:03 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
Merge pull request #24037 from Abdurrahheem:ash/dev_einsum Add Support for Einsum Layer #24037 ### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress). This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra **DONE**: - [x] 2-5D GMM support added - [x] Matrix transpose support added - [x] Reduction type comupte 'ij->j' - [x] 2nd shape computation - during forward **Next PRs**: - [ ] Broadcasting reduction "...ii ->...i" - [ ] Add lazy shape deduction. "...ij, ...jk->...ik" - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize **Later in 5.x version (requires support for 1D matrices)**: - [ ] Add 1D vector multiplication support - [ ] Inter product "i, i" (problems with 1D shapes) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-22 16:25:02 +08:00
testONNXModels("einsum_batch_diagonal", npy, 0, 0, false, false, 1);
}
TEST_P(Test_ONNX_layers, Einsum_Sum)
{
testONNXModels("einsum_sum", npy, 0, 0, false, false, 1);
}
TEST_P(Test_ONNX_layers, Einsum_transpose)
{
testONNXModels("einsum_transpose", npy, 0, 0, false, false, 1);
}
TEST_P(Test_ONNX_layers, Einsum_const_inputs) {
testONNXModels("einsum_const_inputs", npy, 0, 0, false, false, 1);
}
TEST_P(Test_ONNX_layers, ReduceSum_Consts){
testONNXModels("reducesum_consts");
}
TEST_P(Test_ONNX_layers, Pad2d_Unfused)
{
testONNXModels("ReflectionPad2d");
testONNXModels("ZeroPad2d");
}
TEST_P(Test_ONNX_layers, LinearWithConstant)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2020040000)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
#endif
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
testONNXModels("lin_with_constant");
}
TEST_P(Test_ONNX_layers, MatmulWithTwoInputs)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2020040000)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
#endif
testONNXModels("matmul_with_two_inputs");
}
TEST_P(Test_ONNX_layers, ResizeOpset11_Torch1_6)
{
testONNXModels("resize_opset11_torch1.6");
}
2021-01-15 19:01:48 +08:00
TEST_P(Test_ONNX_layers, Mish)
{
testONNXModels("mish");
2022-07-28 11:21:29 +08:00
testONNXModels("mish_no_softplus");
2021-01-15 19:01:48 +08:00
}
TEST_P(Test_ONNX_layers, CalculatePads)
{
testONNXModels("calc_pads");
}
TEST_P(Test_ONNX_layers, Conv1d)
{
testONNXModels("conv1d");
}
TEST_P(Test_ONNX_layers, Conv1d_bias)
{
testONNXModels("conv1d_bias");
}
TEST_P(Test_ONNX_layers, Conv1d_variable_weight)
{
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported
String basename = "conv1d_variable_w";
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat input = blobFromNPY(_tf("data/input_" + basename + "_0.npy"));
Mat weights = blobFromNPY(_tf("data/input_" + basename + "_1.npy"));
Mat ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
net.setInput(input, "0");
net.setInput(weights, "1");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
}
TEST_P(Test_ONNX_layers, Conv1d_variable_weight_bias)
{
if (backend == DNN_BACKEND_CUDA)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported
2020-11-17 19:33:39 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_CPU && getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
2020-11-17 19:33:39 +08:00
}
String basename = "conv1d_variable_wb";
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat input = blobFromNPY(_tf("data/input_" + basename + "_0.npy"));
Mat weights = blobFromNPY(_tf("data/input_" + basename + "_1.npy"));
Mat bias = blobFromNPY(_tf("data/input_" + basename + "_2.npy"));
Mat ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
net.setInput(input, "0");
net.setInput(weights, "1");
net.setInput(bias, "bias");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
}
TEST_P(Test_ONNX_layers, GatherMultiOutput)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE Exception: Ngraph operation Reshape with name 6 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2021030000)
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE);
#endif
2022-03-16 23:41:39 +08:00
testONNXModels("gather_multi_output", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, DynamicAxes_squeeze_and_conv)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("squeeze_and_conv_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_unsqueeze_and_conv)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("unsqueeze_and_conv_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_gather)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
2022-03-16 23:41:39 +08:00
testONNXModels("gather_dynamic_axes", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, DynamicAxes_gather_scalar)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// accuracy
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// accuracy
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#elif defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
2022-03-16 23:41:39 +08:00
testONNXModels("gather_scalar_dynamic_axes", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, DynamicAxes_slice)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("slice_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_slice_opset_11)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("slice_opset_11_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_resize_opset11_torch16)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("resize_opset11_torch1.6_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_average_pooling)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("average_pooling_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_maxpooling_sigmoid)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("maxpooling_sigmoid_dynamic_axes");
}
TEST_P(Test_ONNX_layers, DynamicAxes_dynamic_batch)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#if INF_ENGINE_VER_MAJOR_LT(2021000000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#endif
testONNXModels("dynamic_batch");
}
TEST_P(Test_ONNX_layers, MaxPool1d)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
{
// 2021.4: [ GENERAL_ERROR ] AssertionFailed: !expired()
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
testONNXModels("maxpooling_1d");
}
TEST_P(Test_ONNX_layers, MaxPoolSigmoid1d)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
testONNXModels("maxpooling_sigmoid_1d");
}
TEST_P(Test_ONNX_layers, MaxPool1d_Twise)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
testONNXModels("two_maxpooling_1d");
}
TEST_P(Test_ONNX_layers, AvePool1d)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
testONNXModels("average_pooling_1d");
}
TEST_P(Test_ONNX_layers, PoolConv1d)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
#endif
testONNXModels("pool_conv_1d");
}
TEST_P(Test_ONNX_layers, ConvResizePool1d)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// IE Exception: Ngraph operation Reshape with name 15 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#if INF_ENGINE_VER_MAJOR_EQ(2021030000)
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
#endif
}
#endif
const double lInf = (target == DNN_TARGET_CPU_FP16) ? 0.024 : default_lInf;
testONNXModels("conv_resize_pool_1d", npy, default_l1, lInf);
}
2023-01-11 08:42:51 +08:00
TEST_P(Test_ONNX_layers, DepthWiseAdd)
{
testONNXModels("depthwiseconv_add");
}
2023-01-28 11:41:00 +08:00
TEST_P(Test_ONNX_layers, DepthStride2)
{
testONNXModels("depthwise_stride2");
}
TEST_P(Test_ONNX_layers, SubFromConst)
{
testONNXModels("sub_from_const1");
testONNXModels("sub_from_const_eltwise");
testONNXModels("sub_from_const_broadcast");
}
2021-12-21 00:53:37 +08:00
TEST_P(Test_ONNX_layers, DivConst)
{
testONNXModels("div_const");
}
TEST_P(Test_ONNX_layers, Gemm)
{
testONNXModels("gemm_no_transB");
testONNXModels("gemm_transB_0");
testONNXModels("gemm_first_const");
}
TEST_P(Test_ONNX_layers, Gemm_bias)
{
testONNXModels("gemm_vector_bias");
}
TEST_P(Test_ONNX_layers, Quantized_Convolution)
{
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // TODO: fix this test for OpenVINO
// The difference of QOperator and QDQ format:
// https://onnxruntime.ai/docs/performance/quantization.html#onnx-quantization-representation-format.
{
SCOPED_TRACE("QOperator quantized model.");
testONNXModels("quantized_conv_uint8_weights", npy, 0.004, 0.02);
testONNXModels("quantized_conv_int8_weights", npy, 0.03, 0.5);
testONNXModels("quantized_conv_per_channel_weights", npy, 0.06, 0.4);
testONNXModels("quantized_conv_asymmetric_pads_int8_weights");
}
2022-05-16 19:01:37 +08:00
{
SCOPED_TRACE("QDQ quantized model.");
testONNXModels("quantized_conv_uint8_weights_qdq", npy, 0.004, 0.02);
testONNXModels("quantized_conv_int8_weights_qdq", npy, 0.03, 0.5);
testONNXModels("quantized_conv_per_channel_weights_qdq", npy, 0.06, 0.4);
}
}
TEST_P(Test_ONNX_layers, Quantized_MatMul)
{
testONNXModels("quantized_matmul_uint8_weights", npy, 0.008, 0.015);
testONNXModels("quantized_matmul_int8_weights", npy, 0.06, 0.2);
testONNXModels("quantized_matmul_per_channel_weights", npy, 0.06, 0.22);
}
TEST_P(Test_ONNX_layers, Quantized_Gemm)
{
testONNXModels("quantized_gemm", npy);
}
TEST_P(Test_ONNX_layers, Quantized_MatMul_Variable_Weights)
{
// Unsupported
EXPECT_THROW(
{
testONNXModels("quantized_matmul_variable_inputs");
}, cv::Exception);
}
TEST_P(Test_ONNX_layers, Quantized_Eltwise)
{
testONNXModels("quantized_eltwise");
}
TEST_P(Test_ONNX_layers, Quantized_Eltwise_Scalar)
{
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // TODO: fix this test for OpenVINO
testONNXModels("quantized_eltwise_scalar");
}
TEST_P(Test_ONNX_layers, Quantized_Eltwise_Broadcast)
{
testONNXModels("quantized_eltwise_broadcast");
}
TEST_P(Test_ONNX_layers, Quantized_LeakyReLU)
{
testONNXModels("quantized_leaky_relu");
}
TEST_P(Test_ONNX_layers, Quantized_Sigmoid)
{
testONNXModels("quantized_sigmoid");
}
TEST_P(Test_ONNX_layers, Quantized_MaxPool)
{
testONNXModels("quantized_maxpool");
}
TEST_P(Test_ONNX_layers, Quantized_AvgPool)
{
testONNXModels("quantized_avgpool");
}
TEST_P(Test_ONNX_layers, Quantized_Split)
{
testONNXModels("quantized_split");
}
TEST_P(Test_ONNX_layers, Quantized_Pad)
{
testONNXModels("quantized_padding");
}
TEST_P(Test_ONNX_layers, Quantized_Reshape)
{
testONNXModels("quantized_reshape");
}
TEST_P(Test_ONNX_layers, Quantized_Transpose)
{
testONNXModels("quantized_transpose");
}
TEST_P(Test_ONNX_layers, Quantized_Squeeze)
{
testONNXModels("quantized_squeeze");
}
TEST_P(Test_ONNX_layers, Quantized_Unsqueeze)
{
testONNXModels("quantized_unsqueeze");
}
TEST_P(Test_ONNX_layers, Quantized_Resize)
{
testONNXModels("quantized_resize_nearest");
Merge pull request #23987 from dkurt:openvino_int8_backend OpenVINO backend for INT8 models #23987 ### Pull Request Readiness Checklist TODO: - [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069) - [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum) - [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039) - [x] Single layer tests (convolution) - [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~ Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`: | backend | performance (median time) | |---|---| | OpenCV | 77.42ms | | OpenVINO 2023.0 | 10.90ms | CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz` Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef --- See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 21:24:43 +08:00
double l1 = backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.0013 : 2e-4;
testONNXModels("quantized_resize_bilinear", npy, l1, 0.003);
l1 = backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.0013 : 3e-4;
testONNXModels("quantized_resize_bilinear_align", npy, l1, 0.003);
}
TEST_P(Test_ONNX_layers, Quantized_Concat)
{
Merge pull request #23987 from dkurt:openvino_int8_backend OpenVINO backend for INT8 models #23987 ### Pull Request Readiness Checklist TODO: - [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069) - [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum) - [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039) - [x] Single layer tests (convolution) - [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~ Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`: | backend | performance (median time) | |---|---| | OpenCV | 77.42ms | | OpenVINO 2023.0 | 10.90ms | CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz` Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef --- See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 21:24:43 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
testONNXModels("quantized_concat");
testONNXModels("quantized_concat_const_blob");
}
TEST_P(Test_ONNX_layers, Quantized_Constant)
{
testONNXModels("quantized_constant", npy, 0.008, 0.02);
}
TEST_P(Test_ONNX_layers, OutputRegistration)
{
testONNXModels("output_registration", npy, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, QLinearSoftmax)
{
Merge pull request #23987 from dkurt:openvino_int8_backend OpenVINO backend for INT8 models #23987 ### Pull Request Readiness Checklist TODO: - [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069) - [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum) - [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039) - [x] Single layer tests (convolution) - [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~ Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`: | backend | performance (median time) | |---|---| | OpenCV | 77.42ms | | OpenVINO 2023.0 | 10.90ms | CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz` Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef --- See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 21:24:43 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
testONNXModels("qlinearsoftmax_v11", npy, 0.002, 0.002); // 2D coerced
testONNXModels("qlinearsoftmax_v13", npy, 0.002, 0.002);
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
class Test_ONNX_nets : public Test_ONNX_layers
{
public:
Test_ONNX_nets() { required = false; }
};
TEST_P(Test_ONNX_nets, Alexnet)
{
#if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32))
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
#else
2018-10-09 06:38:06 +08:00
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
#endif
const String model = _tf("models/alexnet.onnx", false);
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.enableWinograd(false);
Mat inp = imread(_tf("../grace_hopper_227.png"));
Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy"));
checkBackend(&inp, &ref);
net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false));
ASSERT_FALSE(net.empty());
Mat out = net.forward();
normAssert(out, ref, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_nets, RAFT)
{
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG, CV_TEST_TAG_MEMORY_2GB);
std::string weight_path = _tf("models/optical_flow_estimation_raft_2023aug.onnx", false);
std::string img0_path = findDataFile(std::string("gpu/opticalflow/frame0.png"));
std::string img1_path = findDataFile(std::string("gpu/opticalflow/frame1.png"));
Size target_size{480, 360};
auto img0 = imread(img0_path);
auto img1 = imread(img1_path);
auto blob0 = blobFromImage(img0, 1.0, target_size, 0, true);
auto blob1 = blobFromImage(img1, 1.0, target_size, 0, true);
auto net = readNet(weight_path);
net.setInput(blob0, "0");
net.setInput(blob1, "1");
std::vector<std::string> outnames{"12007", "12006"};
std::vector<Mat> outs;
net.forward(outs, outnames);
// output 12006 is not checked to save space in opencv_extra since its ref is > 1MB,
// and output 12006 is calculated from 12007 so checking 12007 is sufficient.
std::string ref_12700_path = _tf("data/output_optical_flow_estimation_raft_2023aug.npy");
auto ref0 = blobFromNPY(ref_12700_path);
normAssert(ref0, outs[0], "", 1e-5, 1.8e-4);
}
TEST_P(Test_ONNX_nets, Squeezenet)
{
testONNXModels("squeezenet", pb);
}
TEST_P(Test_ONNX_nets, Googlenet)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// accuracy
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
// accuracy
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
const String model = _tf("models/googlenet.onnx", false);
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
if (target == DNN_TARGET_CPU_FP16)
net.enableWinograd(false);
std::vector<Mat> images;
images.push_back( imread(_tf("../googlenet_0.png")) );
images.push_back( imread(_tf("../googlenet_1.png")) );
Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false);
Mat ref = blobFromNPY(_tf("../googlenet_prob.npy"));
checkBackend(&inp, &ref);
net.setInput(inp);
ASSERT_FALSE(net.empty());
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_nets, CaffeNet)
{
#if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32))
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
#else
2018-10-09 06:38:06 +08:00
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
#endif
2019-10-04 15:29:27 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019030000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
2019-10-04 15:29:27 +08:00
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
2019-10-04 15:29:27 +08:00
#endif
testONNXModels("caffenet", pb);
}
TEST_P(Test_ONNX_nets, RCNN_ILSVRC13)
{
#if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32))
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
#else
2018-10-09 06:38:06 +08:00
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
#endif
2019-10-04 15:29:27 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019030000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
2019-10-04 15:29:27 +08:00
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
2019-10-04 15:29:27 +08:00
#endif
// Reference output values are in range [-4.992, -1.161]
testONNXModels("rcnn_ilsvrc13", pb, 0.0046);
}
TEST_P(Test_ONNX_nets, VGG16_bn)
{
2018-10-09 06:38:06 +08:00
applyTestTag(CV_TEST_TAG_MEMORY_6GB); // > 2.3Gb
// output range: [-16; 27], after Softmax [0; 0.67]
const double lInf = (target == DNN_TARGET_MYRIAD) ? 0.038 : default_lInf;
testONNXModels("vgg16-bn", pb, default_l1, lInf, true);
}
TEST_P(Test_ONNX_nets, ZFNet)
{
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
testONNXModels("zfnet512", pb);
}
TEST_P(Test_ONNX_nets, ResNet18v1)
{
2018-10-09 06:38:06 +08:00
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
// output range: [-16; 22], after Softmax [0, 0.51]
testONNXModels("resnet18v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
}
TEST_P(Test_ONNX_nets, ResNet50v1)
{
2018-10-09 06:38:06 +08:00
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
// output range: [-67; 75], after Softmax [0, 0.98]
size_t hwm0 = getTopMemoryUsageMB();
testONNXModels("resnet50v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
size_t hwm1 = getTopMemoryUsageMB();
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_CPU)
{
EXPECT_LE(hwm1 - hwm0, 350) << "Top allocated memory";
}
}
TEST_P(Test_ONNX_nets, ResNet50_Int8)
{
testONNXModels("resnet50_int8", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC)
{
2018-10-09 06:38:06 +08:00
applyTestTag(CV_TEST_TAG_VERYLONG);
2019-04-01 20:00:25 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
#endif
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL)
{
if (backend == DNN_BACKEND_OPENCV)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_OPENCL : CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
throw SkipTestException("Test is disabled for OpenCL targets");
}
testONNXModels("resnet101_duc_hdc", pb);
}
TEST_P(Test_ONNX_nets, TinyYolov2)
{
2018-10-09 06:38:06 +08:00
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
if (cvtest::skipUnstableTests)
throw SkipTestException("Skip unstable test");
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
&& (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
2018-10-09 06:38:06 +08:00
// output range: [-11; 8]
double l1 = default_l1, lInf = default_lInf;
Merge pull request #22275 from zihaomu:fp16_support_conv DNN: FP16 support on Convolution 2D #22275 ## FP16 support on ARM platform This PR proposes to support FP16 backend in Convolution. For now, we only support FP16 at ARM aarch64. In addition to adding fp16, I also added `seperateIm2col` optimization in this patch. ## How to use FP16 to speed up convolution? ``` Net net = readNet(modelPath); net.setPreferableTarget(DNN_TARGET_CPU_FP16); net.setInput(blob); Mat output = net.forward(); ``` ### TODO List | Task | Status | Remarks | |:-------:|:--------:|:------------:| | Convolution 2D FP16 | :heavy_check_mark: | Done | | Winograd FP16 | Because the current modification has reached 2k lines, winograd fp16 will be completed in the next PR. | | | Accuracy Test | :heavy_check_mark: | Done | | Performance Test | :heavy_check_mark: | Done | | Compiler bug | :heavy_check_mark: | Done | ### Speed Test for FP 16. **Test on M1 chip, 4 threads.** | Model Name | FP32 (Conv+Wino) | Conv(FP16) + Wino(FP 32) | |:-------:|:--------:|:------------:| | ReseNet 50 | 26.0 ms | **18.05 ms** (25% speed up)| | MobileNet V2 | 4.17 ms | **3.09 ms (29% speed up)** | ### Speed Test for `seperateIm2col` trick on X86. **Test on AMD 5600x, 12 threads.** | Model Name | 4.x | Patch | |:-------:|:--------:|:------------:| | MobileNet V2 | 5.6 ms | **3.0 ms (46% speed up)** | ### Performance Test #### Performance Test of X86 platform: AMD 5600X, with `-perf_threas=1` |Name of Test|4.x|patch|patch vs 4.x (x-factor)| |---|:-:|:-:|:-:| |Name of Test|4.x 0|fp16pr final|fp16pr final vs 4.x 0 (x-factor)| |---|:-:|:-:|:-:| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.00| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.03| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.001|0.001|0.92| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.002|0.003|0.95| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.006|0.006|1.00| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.045|0.033|1.39| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.011|0.009|1.17| |conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.109|0.078|1.39| |conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.040|0.042|0.94| |conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.326|0.342|0.95| |conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.580|0.589|0.99| |conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.293|1.382|0.94| |conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.590|3.710|0.97| |conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.120|1.191|0.94| |conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.576|2.872|0.90| |conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.599|4.670|0.98| |conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|9.230|9.582|0.96| |conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|65.946|69.381|0.95| |conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|18.915|19.289|0.98| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|1.404|1.457|0.96| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|2.060|1.501|1.37| |conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.409|1.464|0.96| |conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|1.793|1.838|0.98| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.207|1.199|1.01| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.277|1.275|1.00| |conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.319|2.370|0.98| |conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.351|1.346|1.00| |conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|3.520|3.612|0.97| |conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.876|1.880|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.981|1.995|0.99| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|2.620|2.627|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|4.202|4.123|1.02| |conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.429|2.445|0.99| |conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|2.591|2.576|1.01| |conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|3.005|2.998|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|3.515|3.532|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|3.115|3.134|0.99| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.937|3.899|1.01| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|5.533|5.471|1.01| |conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.472|3.464|1.00| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|4.302|4.322|1.00| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|6.100|6.035|1.01| |conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|6.580|6.484|1.01| |conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|9.741|9.634|1.01| |conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|10.131|10.156|1.00| |conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|12.391|12.350|1.00| |conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|91.074|87.893|1.04| |conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|5.903|5.903|1.00| |conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.890|6.794|1.01| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.160|5.131|1.01| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|4.970|5.036|0.99| |conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|5.045|5.015|1.01| |conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|11.583|11.343|1.02| |conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.348|5.320|1.01| |conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|5.357|5.396|0.99| |conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|6.050|6.006|1.01| |conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|5.952|5.953|1.00| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|8.014|8.014|1.00| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.472|12.577|0.99| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|10.803|10.655|1.01| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|18.429|13.405|1.37| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|6.659|6.647|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|14.192|13.819|1.03| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|6.045|6.068|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.742|12.828|0.99| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|8.046|7.773|1.04| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.440|17.192|1.01| |conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|15.418|14.972|1.03| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.430|0.430|1.00| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|6.692|6.663|1.00| |conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|6.350|6.347|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.267|0.265|1.01| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|7.755|7.558|1.03| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.203|0.202|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.663|10.576|1.01| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|10.827|10.614|1.02| |conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|7.049|6.947|1.01| |conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|6.900|6.901|1.00| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.165|0.165|1.00| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|17.953|17.251|1.04| |conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|7.430|7.320|1.01| |conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|22.187|21.705|1.02| |conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|8.349|8.126|1.03| |conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|8.273|8.297|1.00| |conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|8.169|8.094|1.01| |conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|13.602|13.359|1.02| |conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|8.633|8.584|1.01| |conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|29.339|28.897|1.02| |conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|13.000|12.920|1.01| |conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|14.262|13.319|1.07| |conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|27.453|27.253|1.01| |conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|32.052|27.269|1.18| |conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|15.363|15.208|1.01| |conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|18.543|18.434|1.01| |conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|39.114|37.954|1.03| |conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|36.271|36.972|0.98| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|19.262|19.427|0.99| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.298|19.349|1.00| |conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.261|19.847|1.02| |conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.867|21.525|1.02| |conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|51.756|49.979|1.04| |conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|28.133|27.060|1.04| |conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|25.035|24.980|1.00| |conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|25.858|25.821|1.00| |conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|27.313|27.149|1.01| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|28.219|28.111|1.00| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|46.025|46.674|0.99| |conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|30.220|29.446|1.03| |conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|49.410|48.708|1.01| |conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|38.203|38.001|1.01| |conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|39.961|39.021|1.02| |conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|48.685|47.075|1.03| |conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|75.114|72.586|1.03| |conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|41.222|41.144|1.00| |conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|46.220|46.353|1.00| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|98.201|98.771|0.99| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|100.106|96.971|1.03| |conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|146.977|140.445|1.05| |conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|198.618|194.665|1.02| #### Performance Test of ARM platform: apple M1, with `-perf_threas=1` Min (ms) |Name of Test|4.x|patch|4.x vs patch (x-factor)| |---|:-:|:-:|:-:| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.07| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.10| |conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.002|0.002|0.97| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.003|0.003|0.84| |conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.009|0.009|1.00| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.027|0.030|0.90| |conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.008|0.007|1.07| |conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.066|0.072|0.91| |conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.090|0.054|1.68| |conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.328|0.409|0.80| |conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.659|0.697|0.95| |conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.266|1.403|0.90| |conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.550|4.145|0.86| |conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.188|1.375|0.86| |conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.683|3.236|0.83| |conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.491|5.501|0.82| |conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|8.916|10.181|0.88| |conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.995|72.296|0.97| |conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|22.531|23.139|0.97| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|2.239|1.933|1.16| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU_FP16)|-|1.010|-| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|3.134|2.068|1.52| |conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU_FP16)|-|1.062|-| |conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.918|1.920|1.00| |conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU_FP16)|-|1.014|-| |conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.340|2.352|0.99| |conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.247|-| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.116|1.111|1.00| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU_FP16)|-|1.114|-| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.116|1.112|1.00| |conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|1.113|-| |conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|3.067|3.085|0.99| |conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.622|-| |conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.153|1.187|0.97| |conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU_FP16)|-|1.150|-| |conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|4.804|4.849|0.99| |conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU_FP16)|-|2.922|-| |conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.463|1.469|1.00| |conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.459|-| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.577|1.580|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|1.580|-| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|1.826|1.818|1.00| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|1.817|-| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|6.541|5.081|1.29| |conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|2.809|-| |conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.912|1.919|1.00| |conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.919|-| |conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|1.961|1.971|0.99| |conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|1.961|-| |conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.317|2.329|0.99| |conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.322|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|2.920|2.947|0.99| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|2.924|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|2.467|2.466|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|2.496|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.028|2.997|1.01| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|2.986|-| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|4.353|4.355|1.00| |conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|4.355|-| |conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.762|2.793|0.99| |conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.797|-| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|3.428|3.226|1.06| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU_FP16)|-|3.223|-| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|3.967|3.957|1.00| |conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU_FP16)|-|3.960|-| |conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|4.806|4.387|1.10| |conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU_FP16)|-|4.366|-| |conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|14.509|11.756|1.23| |conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|6.510|-| |conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|13.718|13.287|1.03| |conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.190|-| |conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|15.133|14.853|1.02| |conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|8.671|-| |conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|41.928|43.328|0.97| |conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|38.072|-| |conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.409|4.428|1.00| |conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.427|-| |conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.144|5.363|1.15| |conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU_FP16)|-|5.368|-| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.926|3.932|1.00| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.938|-| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.920|3.915|1.00| |conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.950|-| |conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|3.767|3.764|1.00| |conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|3.762|-| |conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|19.959|13.875|1.44| |conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU_FP16)|-|7.781|-| |conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.951|3.955|1.00| |conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.969|-| |conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|4.050|4.034|1.00| |conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.093|-| |conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|4.923|4.506|1.09| |conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.509|-| |conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|4.759|4.476|1.06| |conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.447|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|6.079|5.628|1.08| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|5.625|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.843|17.523|1.13| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.917|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|8.334|8.247|1.01| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU_FP16)|-|8.246|-| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|23.164|18.199|1.27| |conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.305|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|5.184|5.178|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|5.149|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.990|18.103|0.99| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.777|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|4.831|4.522|1.07| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.523|-| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.328|17.319|1.00| |conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.948|-| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|5.944|5.961|1.00| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|5.936|-| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.811|20.064|0.99| |conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|11.705|-| |conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|22.398|17.686|1.27| |conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU_FP16)|-|9.859|-| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.416|0.416|1.00| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.417|-| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|5.356|5.110|1.05| |conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|5.114|-| |conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|5.092|4.748|1.07| |conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.754|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.260|0.229|1.13| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.229|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|5.872|5.460|1.08| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|5.460|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.161|0.161|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.161|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|7.176|7.175|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.162|-| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|7.174|7.185|1.00| |conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|7.157|-| |conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|5.400|5.180|1.04| |conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.201|-| |conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|5.330|5.188|1.03| |conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.177|-| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.115|0.115|1.00| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.115|-| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|26.156|20.222|1.29| |conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU_FP16)|-|11.203|-| |conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|5.627|5.543|1.02| |conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.506|-| |conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|27.925|27.741|1.01| |conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|17.217|-| |conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|6.359|6.062|1.05| |conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.048|-| |conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|6.559|6.322|1.04| |conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|6.280|-| |conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|6.412|6.200|1.03| |conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.197|-| |conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|9.167|8.624|1.06| |conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU_FP16)|-|8.626|-| |conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|6.755|6.491|1.04| |conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.520|-| |conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|35.664|34.752|1.03| |conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|20.260|-| |conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|9.514|9.414|1.01| |conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.462|-| |conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|10.631|9.963|1.07| |conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.935|-| |conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|37.465|36.798|1.02| |conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|19.569|-| |conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|38.157|36.157|1.06| |conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU_FP16)|-|18.902|-| |conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.356|10.401|1.00| |conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|10.360|-| |conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|12.641|12.150|1.04| |conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|12.162|-| |conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|50.545|50.505|1.00| |conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|27.950|-| |conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|54.233|49.603|1.09| |conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|26.515|-| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|13.779|12.968|1.06| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|12.984|-| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|15.809|15.329|1.03| |conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|15.433|-| |conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|14.563|14.527|1.00| |conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|14.480|-| |conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|16.714|16.484|1.01| |conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|16.362|-| |conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|77.832|65.729|1.18| |conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|32.065|-| |conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|21.903|20.386|1.07| |conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|20.416|-| |conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|20.405|18.148|1.12| |conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|18.128|-| |conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.334|18.521|1.10| |conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|18.495|-| |conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.527|19.584|1.10| |conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|19.630|-| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|22.715|20.057|1.13| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|20.068|-| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|26.228|24.992|1.05| |conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|24.957|-| |conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|21.524|21.581|1.00| |conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|21.782|-| |conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|34.094|31.964|1.07| |conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|31.925|-| |conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|28.677|27.813|1.03| |conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.808|-| |conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|31.274|27.892|1.12| |conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.910|-| |conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|30.533|30.007|1.02| |conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|30.089|-| |conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|39.837|38.312|1.04| |conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|38.477|-| |conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|32.480|29.237|1.11| |conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU_FP16)|-|29.452|-| |conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|33.544|32.832|1.02| |conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|32.784|-| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|134.481|130.678|1.03| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU_FP16)|-|70.134|-| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|127.930|126.530|1.01| |conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|65.261|-| |conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|201.346|187.007|1.08| |conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|91.525|-| |conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|252.038|245.587|1.03| |conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU_FP16)|-|125.477|-| ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-17 14:38:33 +08:00
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
{
l1 = 0.02;
lInf = 0.2;
}
else if (target == DNN_TARGET_CUDA_FP16)
{
l1 = 0.018;
lInf = 0.16;
}
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.018f; lInf = 0.16f;
}
#endif
testONNXModels("tiny_yolo2", pb, l1, lInf, false, true, 1, true, false);
}
TEST_P(Test_ONNX_nets, CNN_MNIST)
{
// output range: [-1952; 6574], after Softmax [0; 1]
testONNXModels("cnn_mnist", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, MobileNet_v2)
{
// output range: [-166; 317], after Softmax [0; 1]
testONNXModels("mobilenetv2", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, MobileNet_v2_FP16)
{
testONNXModels("mobilenetv2_fp16", npy, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, LResNet100E_IR)
{
applyTestTag(
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
CV_TEST_TAG_MEMORY_2GB,
#else
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
#endif
CV_TEST_TAG_DEBUG_VERYLONG
);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
double l1 = default_l1, lInf = default_lInf;
// output range: [-3; 3]
bool useWinograd = true;
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.009;
lInf = 0.035;
}
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_CPU)
{
l1 = 4.6e-5;
2019-01-14 14:55:44 +08:00
lInf = 1.9e-4;
}
else if (target == DNN_TARGET_CUDA_FP16)
{
l1 = 0.009;
lInf = 0.04;
}
else if (target == DNN_TARGET_CPU_FP16)
{
useWinograd = false;
l1 = 0.009;
lInf = 0.035;
}
testONNXModels("LResNet100E_IR", pb, l1, lInf, false, true, 1, true, useWinograd);
}
TEST_P(Test_ONNX_nets, Emotion_ferplus)
{
#if defined(INF_ENGINE_RELEASE)
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
2018-12-20 18:14:47 +08:00
double l1 = default_l1;
double lInf = default_lInf;
bool useWinograd = true;
// Output values are in range [-2.011, 2.111]
if ((backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || (target == DNN_TARGET_CUDA_FP16))
2018-12-20 18:14:47 +08:00
l1 = 0.007;
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
2018-12-20 18:14:47 +08:00
{
l1 = 0.021;
lInf = 0.034;
}
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL)) {
2019-01-14 14:55:44 +08:00
l1 = 2.4e-4;
lInf = 6e-4;
}
else if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_CPU_FP16)
{
useWinograd = false;
l1 = 0.007;
}
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.013f; lInf = 0.035f;
}
#endif
testONNXModels("emotion_ferplus", pb, l1, lInf, false, true, 1, true, useWinograd);
}
TEST_P(Test_ONNX_nets, Inception_v2)
{
testONNXModels("inception_v2", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, DenseNet121)
{
2018-10-09 06:38:06 +08:00
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
// output range: [-87; 138], after Softmax [0; 1]
testONNXModels("densenet121", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
}
TEST_P(Test_ONNX_nets, Inception_v1)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
2018-12-20 18:14:47 +08:00
#endif
testONNXModels("inception_v1", pb);
}
TEST_P(Test_ONNX_nets, Shufflenet)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
#endif
testONNXModels("shufflenet", pb);
}
TEST_P(Test_ONNX_nets, Resnet34_kinetics)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
// IE exception: Failed to allocate graph: MYRIAD device is not opened
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
// accuracy
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
);
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
// IE exception: Function contains several inputs and outputs with one friendly name!
if (target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
#endif
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported"); // FIXIT use tags
if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
2019-07-16 15:53:50 +08:00
String onnxmodel = findDataFile("dnn/resnet-34_kinetics.onnx", false);
Mat image0 = imread(findDataFile("dnn/dog416.png"));
Mat image1 = imread(findDataFile("dnn/street.png"));
Mat ref0 = blobFromNPY(_tf("data/output_kinetics0.npy"));
Mat ref1 = blobFromNPY(_tf("data/output_kinetics1.npy"));
std::vector<Mat> images_0(16, image0);
std::vector<Mat> images_1(16, image1);
Mat blob0 = blobFromImages(images_0, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true);
Mat blob1 = blobFromImages(images_1, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true);
Net permute;
LayerParams lp;
int order[] = {1, 0, 2, 3};
lp.set("order", DictValue::arrayInt<int*>(&order[0], 4));
permute.addLayerToPrev("perm", "Permute", lp);
permute.setPreferableBackend(backend);
permute.setPreferableTarget(target);
permute.setInput(blob0);
Mat input0 = permute.forward().clone();
permute.setInput(blob1);
Mat input1 = permute.forward().clone();
int dims[] = {1, 3, 16, 112, 112};
input0 = input0.reshape(0, 5, &dims[0]);
input1 = input1.reshape(0, 5, &dims[0]);
Net net = readNetFromONNX(onnxmodel);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
// output range [-5, 11]
float l1 = 0.0013;
float lInf = 0.009;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.02;
lInf = 0.07;
}
if (target == DNN_TARGET_CUDA_FP16)
{
l1 = 0.01;
lInf = 0.06;
}
testInputShapes(net, {input0});
checkBackend(&input0, &ref0);
net.setInput(input0);
Mat out = net.forward().clone();
normAssert(ref0, out, "", l1, lInf);
checkBackend(&input1, &ref1);
net.setInput(input1);
out = net.forward().clone();
normAssert(ref1, out, "", l1, lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_layers, CumSum)
{
testONNXModels("cumsum_1d_exclusive_1");
testONNXModels("cumsum_1d_reverse");
testONNXModels("cumsum_1d_exclusive_1_reverse");
testONNXModels("cumsum_2d_dim_1");
testONNXModels("cumsum_3d_dim_2");
testONNXModels("cumsum_3d_dim_2_int32");
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
}
TEST_P(Test_ONNX_layers, CumSum_int64)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // OpenVINO uses int32 precision for int64 operations
testONNXModels("cumsum_3d_dim_2_int64");
}
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
TEST_P(Test_ONNX_layers, ReduceSumInt64)
{
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // OpenVINO uses int32 precision for int64 operations
testONNXModels("reduce_sum_int64");
}
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
TEST_P(Test_ONNX_layers, ScatterInt32)
{
testONNXModels("scatter_int32", npy, 0, 0, false, true, 3);
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
}
TEST_P(Test_ONNX_layers, ScatterInt64)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // OpenVINO uses int32 precision for int64 operations
testONNXModels("scatter_int64", npy, 0, 0, false, true, 3);
}
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
TEST_P(Test_ONNX_layers, TileInt32)
{
testONNXModels("tile_int32");
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support Added int support for OpenVINO dnn backend #25458 Modified dnn OpenVINO integration to support type inference and int operations. Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers. I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests. OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO. OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled: - Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU) - Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU) - Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU) Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches: - Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU - Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU - Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 16:51:59 +08:00
}
TEST_P(Test_ONNX_layers, TileInt64)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // OpenVINO uses int32 precision for int64 operations
testONNXModels("tile_int64");
}
static void testYOLO(const std::string& weightPath, const std::vector<int>& refClassIds,
const std::vector<float>& refScores, const std::vector<Rect2d>& refBoxes,
Image2BlobParams imgParams, float conf_threshold = 0.3, float iou_threshold = 0.5,
double scores_diff = 1e-5, double boxes_iou_diff = 1e-4, const std::string test_name = "")
2022-09-19 18:38:03 +08:00
{
std::string imgPath = _tf("../dog_orig_size.png");
Mat img = imread(imgPath);
Mat inp = blobFromImageWithParams(img, imgParams);
2022-09-19 18:38:03 +08:00
Net net = readNet(weightPath);
net.setInput(inp);
std::vector<Mat> outs;
net.forward(outs, net.getUnconnectedOutLayersNames());
// Retrieve
std::vector<int> keep_classIds;
std::vector<float> keep_confidences;
std::vector<Rect2d> keep_boxes;
yoloPostProcessing(outs, keep_classIds, keep_confidences, keep_boxes, conf_threshold, iou_threshold, test_name);
normAssertDetections(
refClassIds, refScores, refBoxes,
keep_classIds, keep_confidences, keep_boxes,
"", 0.0, scores_diff, boxes_iou_diff);
}
void yoloPostProcessing(
std::vector<Mat>& outs,
std::vector<int>& keep_classIds,
std::vector<float>& keep_confidences,
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
const std::string& model_name,
const int nc
){
2022-09-19 18:38:03 +08:00
// Retrieve
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<Rect2d> boxes;
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
if (model_name == "yolov8" || model_name == "yolov10" ||
model_name == "yolov9")
{
cv::transposeND(outs[0], {0, 2, 1}, outs[0]);
}
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
if (model_name == "yolonas"){
2024-01-03 17:42:10 +08:00
// outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84]
Mat concat_out;
// squeeze the first dimension
outs[0] = outs[0].reshape(1, outs[0].size[1]);
outs[1] = outs[1].reshape(1, outs[1].size[1]);
cv::hconcat(outs[1], outs[0], concat_out);
outs[0] = concat_out;
// remove the second element
outs.pop_back();
// unsqueeze the first dimension
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, 84});
}
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
// assert if last dim is 85 or 84
CV_CheckEQ(outs[0].dims, 3, "Invalid output shape. The shape should be [1, #anchors, 85 or 84]");
CV_CheckEQ((outs[0].size[2] == nc + 5 || outs[0].size[2] == 80 + 4), true, "Invalid output shape: ");
for (auto preds : outs){
preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85]
for (int i = 0; i < preds.rows; ++i)
{
2024-01-03 17:42:10 +08:00
// filter out non object
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
float obj_conf = (model_name == "yolov8" || model_name == "yolonas" ||
model_name == "yolov9" || model_name == "yolov10") ? 1.0f : preds.at<float>(i, 4) ;
if (obj_conf < conf_threshold)
continue;
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
Mat scores = preds.row(i).colRange((model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? 4 : 5, preds.cols);
double conf;
Point maxLoc;
minMaxLoc(scores, 0, &conf, 0, &maxLoc);
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
conf = (model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? conf : conf * obj_conf;
if (conf < conf_threshold)
continue;
// get bbox coords
float* det = preds.ptr<float>(i);
double cx = det[0];
double cy = det[1];
double w = det[2];
double h = det[3];
// [x1, y1, x2, y2]
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
if (model_name == "yolonas" || model_name == "yolov10"){
2024-01-03 17:42:10 +08:00
boxes.push_back(Rect2d(cx, cy, w, h));
} else {
boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h,
cx + 0.5 * w, cy + 0.5 * h));
}
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
classIds.push_back(maxLoc.x);
confidences.push_back(conf);
}
2022-09-19 18:38:03 +08:00
}
// NMS
std::vector<int> keep_idx;
NMSBoxes(boxes, confidences, conf_threshold, iou_threshold, keep_idx);
for (auto i : keep_idx)
{
keep_classIds.push_back(classIds[i]);
keep_confidences.push_back(confidences[i]);
keep_boxes.push_back(boxes[i]);
}
}
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
TEST_P(Test_ONNX_nets, YOLOv10)
{
std::string weightPath = _tf("models/yolov10s.onnx", false);
Size targetSize{640, 480};
float conf_threshold = 0.50;
float iou_threshold = 0.50;
std::vector<int> refClassIds{1, 16, 7};
std::vector<float> refScores{0.9510f, 0.9454f, 0.8404f};
std::vector<Rect2d> refBoxes{
Rect2d(105.5014, 112.8838, 472.9274, 350.0603),
Rect2d(109.8231, 185.7994, 258.5916, 452.9302),
Rect2d(388.5018, 62.1034, 576.6399, 143.3986)
};
Image2BlobParams imgParams(
Scalar::all(1 / 255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);
testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4, "yolov10");
}
TEST_P(Test_ONNX_nets, YOLOv9)
{
std::string weightPath = _tf("models/yolov9t.onnx", false);
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
Size targetSize{640, 480};
float conf_threshold = 0.50;
float iou_threshold = 0.50;
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
std::vector<int> refClassIds{1, 16, 2}; // wrong class mapping for yolov9
std::vector<float> refScores{0.959274f, 0.901125f, 0.559396f};
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794 This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). **Running YOLOv10 using OpenCV.** 1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce. ```bash git clone git@github.com:Abdurrahheem/yolov10.git conda create -n yolov10 python=3.9 conda activate yolov10 pip install -r requirements.txt python export_opencv.py --model=<model-name> --imgsz=<input-img-size> ``` By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV 2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. ``` bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114 ``` If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) **Running YOLOv9 using OpenCV** 1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting. ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 conda create -n yolov9 python=3.9 conda activate yolov9 pip install -r requirements.txt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) ``` This will generate <yolov9-t-converted.onnx> file. 2. Inference on OpenCV. ```bash build opencv from source cd build ./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image> ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 23:26:34 +08:00
std::vector<Rect2d> refBoxes{
Rect2d(106.255, 107.927, 472.497, 350.309),
Rect2d(108.633, 185.256, 259.287, 450.672),
Rect2d(390.701, 62.1454, 576.928, 141.795)
};
Image2BlobParams imgParams(
Scalar::all(1 / 255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);
testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4, "yolov9");
}
TEST_P(Test_ONNX_nets, YOLOX)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
std::string weightPath = _tf("models/yolox_s_inf_decoder.onnx", false);
Size targetSize{640, 640};
float conf_threshold = 0.50;
float iou_threshold = 0.50;
2022-09-19 18:38:03 +08:00
std::vector<int> refClassIds{1, 16, 7};
std::vector<float> refScores{0.9649f, 0.9163f, 0.6879f};
std::vector<Rect2d> refBoxes{
Rect2d(105.5384, 179.4100, 470.6339, 428.5553),
Rect2d(111.4482, 263.4098, 258.7438, 526.1140),
Rect2d(389.1421, 143.9286, 577.9495, 222.0294)
};
Image2BlobParams imgParams(
Scalar::all(1),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);
testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4);
2022-09-19 18:38:03 +08:00
}
2024-01-03 17:42:10 +08:00
TEST_P(Test_ONNX_nets, YOLONas)
{
// model information: https://dl.opencv.org/models/yolo-nas/Readme.md
std::string weightPath = _tf("models/yolo_nas_s.onnx", false);
Size targetSize{640, 640};
float conf_threshold = 0.50;
float iou_threshold = 0.50;
std::vector<int> refClassIds{1, 16, 7};
std::vector<float> refScores{0.9720f, 0.9283f, 0.8990f};
// [x1, y1, x2, y2]
std::vector<Rect2d> refBoxes{
Rect2d(105.516, 173.696, 471.323, 430.433),
Rect2d(109.241, 263.406, 259.872, 531.858),
Rect2d(390.153, 142.492, 574.932, 222.709)
};
Image2BlobParams imgParams(
Scalar::all(1/255.0),
targetSize,
Scalar::all(0),
false,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);
testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4, "yolonas");
}
TEST_P(Test_ONNX_nets, YOLOv8)
2022-11-15 14:29:30 +08:00
{
std::string weightPath = _tf("models/yolov8n.onnx", false);
Size targetSize{640, 640};
float conf_threshold = 0.25;
float iou_threshold = 0.50;
std::vector<int> refClassIds{16, 1, 2};
std::vector<float> refScores{0.9332f, 0.8959f, 0.6157f};
// [x1, y1, x2, y2]
std::vector<Rect2d> refBoxes{
Rect2d(108.8965, 261.9094, 257.1633, 530.3049),
Rect2d(110.4020, 192.9843, 473.4418, 429.5965),
Rect2d(389.1603, 143.2506, 577.3542, 223.0615),
};
Image2BlobParams imgParams(
Scalar::all(1/255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);
testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4, "yolov8");
2022-11-15 14:29:30 +08:00
}
// This test is mainly to test:
// 1. identity node with constant input
// 2. limited support to range operator (all inputs are constant)
// 3. parseExpand with multiple broadcast axes
// 4. 1D mat dimension issue with the output of range operator
TEST_P(Test_ONNX_nets, YOLOv7)
{
applyTestTag(
CV_TEST_TAG_MEMORY_2GB,
CV_TEST_TAG_DEBUG_VERYLONG
);
2023-12-28 00:05:24 +08:00
std::string weightPath = _tf("models/yolov7.onnx", false);
// Reference, which is collected with input size of 640x640
std::vector<int> refClassIds{1, 16, 7};
std::vector<float> refScores{0.9614331f, 0.9589417f, 0.8679074f};
// [x1, y1, x2, y2] x 3
std::vector<Rect2d> refBoxes{Rect2d(105.973236f, 150.16716f, 472.59012f, 466.48834f),
Rect2d(109.97953f, 246.17862f, 259.83676f, 600.76624f),
Rect2d(385.96185f, 83.02809f, 576.07355f, 189.82793f)};
Size targetSize{640, 640};
Image2BlobParams imgParams(
Scalar::all(1/255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_NULL,
Scalar::all(0)
);
testYOLO(weightPath, refClassIds, refScores, refBoxes, imgParams);
}
TEST_P(Test_ONNX_nets, YOLOv6)
{
std::string weightPath = _tf("models/yolov6n.onnx", false);
Size targetSize{640, 640};
float conf_threshold = 0.30;
float iou_threshold = 0.50;
std::vector<int> refClassIds{1, 16, 7, 1};
std::vector<float> refScores{0.95031f, 0.87123f, 0.65453f, 0.34142f};
// [x1, y1, x2, y2] x 3
std::vector<Rect2d> refBoxes{Rect2d(98.84, 177.91, 473.29, 431.19),
Rect2d(109.80, 265.50, 258.86, 531.97),
Rect2d(387.79, 141.61, 576.98, 223.52),
Rect2d(105.62, 199.24, 218.37, 389.84),
};
Image2BlobParams imgParams(
Scalar::all(1/255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);
testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-3);
}
TEST_P(Test_ONNX_nets, YOLOv5n)
{
std::string weightPath = findDataFile("dnn/yolov5n.onnx", false);
// Reference, which is collected with input size of 640x640
std::vector<int> refClassIds{16, 2, 1};
std::vector<float> refScores{0.749053f, 0.616853f, 0.32506f};
// [x1, y1, x2, y2] x 4
std::vector<Rect2d> refBoxes{Rect2d(108.088f, 239.293f, 266.196f, 607.658f),
Rect2d(392.028f, 89.9233f, 579.152f, 190.447f),
Rect2d(120.278f, 159.76, 214.481f, 241.473f)};
Size targetSize{640, 640};
Image2BlobParams imgParams(
Scalar::all(1/255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_NULL,
Scalar::all(0)
);
testYOLO(weightPath, refClassIds, refScores, refBoxes, imgParams);
}
2022-11-15 14:29:30 +08:00
TEST_P(Test_ONNX_layers, Tile)
{
2022-11-15 14:29:30 +08:00
testONNXModels("tile", pb);
}
TEST_P(Test_ONNX_layers, Gelu)
{
testONNXModels("gelu");
testONNXModels("gelu_approximation");
}
TEST_P(Test_ONNX_layers, OpenAI_CLIP_head)
{
testONNXModels("clip-vit-base-head");
}
2023-05-05 11:16:19 +08:00
TEST_P(Test_ONNX_layers, where_node)
{
testONNXModels("where_layer");
}
TEST_P(Test_ONNX_layers, Gemm_all_attributes) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_all_attributes", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_alpha) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_alpha", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_beta) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_beta", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_default_matrix_bias) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_default_matrix_bias", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_default_no_bias) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_default_no_bias", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_default_scalar_bias) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_default_scalar_bias", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_default_single_elem_vector_bias) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_default_single_elem_vector_bias", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_default_vector_bias) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_default_vector_bias", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_default_zero_bias) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_default_zero_bias", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_transposeA) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_transposeA", pb, 0, 0, false, true, 2);
}
TEST_P(Test_ONNX_layers, Gemm_transposeB) {
dnn: add gemm_layer in place of fully_connected_layer for onnx models (#23897) * first commit * turned C from input to constant; force C constant in impl; better handling 0d/1d cases * integrate with gemm from ficus nn * fix const inputs * adjust threshold for int8 tryQuantize * adjust threshold for int8 quantized 2 * support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet * add gemm perf against innerproduct * add perf tests for innerproduct with bias * fix perf * add memset * renamings for next step * add dedicated perf gemm * add innerproduct in perf_gemm * remove gemm and innerproduct perf tests from perf_layer * add perf cases for vit sizes; prepack constants * remove batched gemm; fix wrong trans; optimize KC * remove prepacking for const A; several fixes for const B prepacking * add todos and gemm expression * add optimized branch for avx/avx2 * trigger build * update macros and signature * update signature * fix macro * fix bugs for neon aarch64 & x64 * add backends: cuda, cann, inf_ngraph and vkcom * fix cuda backend * test commit for cuda * test cuda backend * remove debug message from cuda backend * use cpu dispatcher * fix neon macro undef in dispatcher * fix dispatcher * fix inner kernel for neon aarch64 * fix compiling issue on armv7; try fixing accuracy issue on other platforms * broadcast C with beta multiplied; improve func namings * fix bug for avx and avx2 * put all platform-specific kernels in dispatcher * fix typos * attempt to fix compile issues on x64 * run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon * fix typo * quick fix: add macros for pack4 * quick fix: use vmlaq_f32 for armv7 * quick fix for missing macro of fast gemm pack f32 4 * disable conformance tests when optimized branches are not supported * disable perf tests when optimized branches are not supported * decouple cv_try_neon and cv_neon_aarch64 * drop googlenet_2023; add fastGemmBatched * fix step in fastGemmBatched * cpu: fix initialization ofb; gpu: support batch * quick followup fix for cuda * add default kernels * quick followup fix to avoid macro redef * optmized kernels for lasx * resolve mis-alignment; remove comments * tune performance for x64 platform * tune performance for neon aarch64 * tune for armv7 * comment time consuming tests * quick follow-up fix
2023-09-20 05:53:34 +08:00
testONNXModels("test_gemm_transposeB", pb, 0, 0, false, true, 2);
}
// Note: These tests are converted from onnx/onnx so that they have constant shape as input.
// TODO: They can be moved into conformance tests once dynamic input is properly supported.
TEST_P(Test_ONNX_layers, Expand_dim_changed) {
testONNXModels("test_expand_dim_changed", pb, 0, 0, false, true, 1);
}
TEST_P(Test_ONNX_layers, Expand_dim_unchanged) {
testONNXModels("test_expand_dim_unchanged", pb, 0, 0, false, true, 1);
}
TEST_P(Test_ONNX_layers, Expand_shape_model1) {
testONNXModels("test_expand_shape_model1", pb, 0, 0, false, true, 1);
}
TEST_P(Test_ONNX_layers, Expand_shape_model2) {
testONNXModels("test_expand_shape_model2", pb, 0, 0, false, true, 1);
}
TEST_P(Test_ONNX_layers, Expand_shape_model3) {
testONNXModels("test_expand_shape_model3", pb, 0, 0, false, true, 1);
}
TEST_P(Test_ONNX_layers, Expand_shape_model4) {
testONNXModels("test_expand_shape_model4", pb, 0, 0, false, true, 1);
}
Merge pull request #24476 from fengyuentau:attention_layer dnn: add attention layer #24476 Resolves #24609 Merge with: https://github.com/opencv/opencv_extra/pull/1128. Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention. TODO: - [x] benchmark (before this PR vs. with this PR vs. ORT). - [x] Layer fusion: Take care Slice with end=INT64_MAX. - [x] Layer fusion: match more potential attention (VIT) patterns. - [x] Single-head attention is supported. - [x] Test AttentionSubgraph fusion. - [x] Add acc tests for VIT_B_32 and VitTrack - [x] Add perf tests for VIT_B_32 and VitTrack ## Benchmarks Platform: Macbook Air M1. ### Attention Subgraph Input scale: [1, 197, 768]. | | mean (ms) | median (ms) | min (ms) | | ---------------------- | --------- | ----------- | -------- | | w/ Attention (this PR) | 3.75 | 3.68 | 3.22 | | w/o Attention | 9.06 | 9.01 | 8.24 | | ORT (python) | 4.32 | 2.63 | 2.50 | ### ViTs All data in millisecond (ms). | ViTs | With Attention | Without Attention | ORT | | -------- | -------------- | ----------------- | ------ | | vit_b_16 | 302.77 | 365.35 | 109.70 | | vit_b_32 | 89.92 | 116.22 | 30.36 | | vit_l_16 | 1593.32 | 1730.74 | 419.92 | | vit_l_32 | 468.11 | 577.41 | 134.12 | | VitTrack | 3.80 | 3.87 | 2.25 | ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-12-21 00:35:07 +08:00
TEST_P(Test_ONNX_layers, Attention) {
testONNXModels("attention");
}
TEST_P(Test_ONNX_layers, AttentionSingleHead) {
testONNXModels("attention_single_head");
}
2024-07-16 15:11:21 +08:00
TEST_P(Test_ONNX_layers, PyTorchAttentionSingleHead) {
// 5.x specific bug: https://github.com/opencv/opencv/issues/25921
if (target == DNN_TARGET_OPENCL)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL);
if (target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
Merge pull request #25861 from Abdurrahheem:ash/torch-attention-export-fix-4x Merge pull request #25861 from Abdurrahheem:ash/torch-attention-export-fix-4x Support for Unflatten operation requred by Attention layer - 4.x #25861 ### Pull Request Readiness Checklist All test data and models for PR are located [#1190](https://github.com/opencv/opencv_extra/pull/1190) This PR fixes issue reised when importing batched vanilla `Attention` layer from `PyTorch` via ONNX. Currently batched version of `Attention` layer in PyTorch [has unflatten operation inside](https://github.com/pytorch/pytorch/blob/e3b3431c4203e9eeead48f96d4afd462f0b81de5/torch/nn/functional.py#L5500C17-L5500C31). `unflatten` operation causes issue in `reshape` layer (see the Reshape_2 in the graph below) due to incorrect output of `slice` layer. This PR particularly fixes `slice` and `concat` layers to handle `unflatten` operation. <img width="673" alt="image" src="https://github.com/opencv/opencv/assets/44877829/5b612b31-657a-47f1-83a4-0ac35a950abd"> See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-07-04 21:25:31 +08:00
testONNXModels("pytorch_attention_single_head");
}
TEST_P(Test_ONNX_layers, PyTorchUnflatten){
testONNXModels("unflatten");
}
Merge pull request #24476 from fengyuentau:attention_layer dnn: add attention layer #24476 Resolves #24609 Merge with: https://github.com/opencv/opencv_extra/pull/1128. Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention. TODO: - [x] benchmark (before this PR vs. with this PR vs. ORT). - [x] Layer fusion: Take care Slice with end=INT64_MAX. - [x] Layer fusion: match more potential attention (VIT) patterns. - [x] Single-head attention is supported. - [x] Test AttentionSubgraph fusion. - [x] Add acc tests for VIT_B_32 and VitTrack - [x] Add perf tests for VIT_B_32 and VitTrack ## Benchmarks Platform: Macbook Air M1. ### Attention Subgraph Input scale: [1, 197, 768]. | | mean (ms) | median (ms) | min (ms) | | ---------------------- | --------- | ----------- | -------- | | w/ Attention (this PR) | 3.75 | 3.68 | 3.22 | | w/o Attention | 9.06 | 9.01 | 8.24 | | ORT (python) | 4.32 | 2.63 | 2.50 | ### ViTs All data in millisecond (ms). | ViTs | With Attention | Without Attention | ORT | | -------- | -------------- | ----------------- | ------ | | vit_b_16 | 302.77 | 365.35 | 109.70 | | vit_b_32 | 89.92 | 116.22 | 30.36 | | vit_l_16 | 1593.32 | 1730.74 | 419.92 | | vit_l_32 | 468.11 | 577.41 | 134.12 | | VitTrack | 3.80 | 3.87 | 2.25 | ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-12-21 00:35:07 +08:00
TEST_P(Test_ONNX_nets, ViT_B_32) {
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_LONG);
const std::string model_path = _tf("models/vit_b_32.onnx", false);
auto net = readNet(model_path);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
auto image = imread(_tf("../googlenet_0.png"));
auto blob = blobFromImage(image, 1.f, Size(224, 224));
auto ref = blobFromNPY(_tf("data/output_vit_b_32.npy"));
checkBackend(&blob, &ref);
net.setInput(blob);
auto out = net.forward();
2023-12-21 21:39:05 +08:00
double l1 = default_l1;
double lInf = default_lInf;
if (target == DNN_TARGET_CUDA_FP16)
{
l1 = 0.01;
lInf = 0.06;
2023-12-21 21:39:05 +08:00
}
if (target == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.008;
lInf = 0.04;
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
if (target == DNN_TARGET_CPU) {
l1 = 4.4e-5; // Expected: (normL1) <= (l1), actual: 4.31208e-05 vs 1e-05
lInf = 0.0002; // Expected: (normInf) <= (lInf), actual: 0.000194907 vs 0.0001
} else if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) {
l1 = 0.0092; // Expected: (normL1) <= (l1), actual: 0.00918349 vs 4.4e-05
lInf = 0.056; // Expected: (normInf) <= (lInf), actual: 0.0556431 vs 0.0002
}
}
2023-12-21 21:39:05 +08:00
normAssert(ref, out, "ViTB_32", l1, lInf);
Merge pull request #24476 from fengyuentau:attention_layer dnn: add attention layer #24476 Resolves #24609 Merge with: https://github.com/opencv/opencv_extra/pull/1128. Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention. TODO: - [x] benchmark (before this PR vs. with this PR vs. ORT). - [x] Layer fusion: Take care Slice with end=INT64_MAX. - [x] Layer fusion: match more potential attention (VIT) patterns. - [x] Single-head attention is supported. - [x] Test AttentionSubgraph fusion. - [x] Add acc tests for VIT_B_32 and VitTrack - [x] Add perf tests for VIT_B_32 and VitTrack ## Benchmarks Platform: Macbook Air M1. ### Attention Subgraph Input scale: [1, 197, 768]. | | mean (ms) | median (ms) | min (ms) | | ---------------------- | --------- | ----------- | -------- | | w/ Attention (this PR) | 3.75 | 3.68 | 3.22 | | w/o Attention | 9.06 | 9.01 | 8.24 | | ORT (python) | 4.32 | 2.63 | 2.50 | ### ViTs All data in millisecond (ms). | ViTs | With Attention | Without Attention | ORT | | -------- | -------------- | ----------------- | ------ | | vit_b_16 | 302.77 | 365.35 | 109.70 | | vit_b_32 | 89.92 | 116.22 | 30.36 | | vit_l_16 | 1593.32 | 1730.74 | 419.92 | | vit_l_32 | 468.11 | 577.41 | 134.12 | | VitTrack | 3.80 | 3.87 | 2.25 | ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-12-21 00:35:07 +08:00
}
TEST_P(Test_ONNX_nets, VitTrack) {
auto image = imread(_tf("../dog_orig_size.png"));
auto input0 = blobFromImage(image, 1.f, Size(128, 128));
auto input1 = blobFromImage(image, 1.f, Size(256, 256));
auto net = readNet(_tf("models/object_tracking_vittrack_2023sep.onnx", false));
net.setInput(input0, "template");
net.setInput(input1, "search");
std::vector<std::string> output_names{"output1", "output2", "output3"};
std::vector<Mat> outputs;
net.forward(outputs, output_names);
auto ref_output1 = blobFromNPY(_tf("data/output_object_tracking_vittrack_2023sep_0.npy"));
auto ref_output2 = blobFromNPY(_tf("data/output_object_tracking_vittrack_2023sep_1.npy"));
auto ref_output3 = blobFromNPY(_tf("data/output_object_tracking_vittrack_2023sep_2.npy"));
normAssert(ref_output1, outputs[0], "VitTrack output1");
normAssert(ref_output2, outputs[1], "VitTrack output2");
normAssert(ref_output3, outputs[2], "VitTrack output3");
}
TEST_P(Test_ONNX_layers, LayerNormNoFusion) {
testONNXModels("layer_norm_no_fusion");
}
TEST_P(Test_ONNX_layers, MatMulAddFusion) {
double l1 = (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) ? 0.0018 : default_l1;
double lInf = (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) ? 0.011 : default_lInf;
testONNXModels("biased_matmul", npy, l1, lInf);
}
TEST_P(Test_ONNX_layers, ClipDivSharedConstant) {
testONNXModels("clip_div_shared_constant");
}
TEST_P(Test_ONNX_layers, TopK) {
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE) {
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); // OpenVINO does not support int64
}
Merge pull request #23279 from fengyuentau:add_topk dnn: add ONNX TopK #23279 Merge with https://github.com/opencv/opencv_extra/pull/1200 Partially fixes #22890 and #20258 To-do: - [x] TopK forward impl - [x] add tests - [x] support Opset 1 & 10 if possible - [ ] ~Support other backends~ (TopK has two outputs, which is not supported by other backends, such as openvino) Perf: M1 (time in millisecond) | input shape | axis | dnn | ort | | --------------- | ---- | ---- | ---- | | (1000, 100) | 0 | 1.68 | 4.07 | | (1000, 100) K5 | 0 | 1.13 | 0.12 | | (1000, 100) | 1 | 0.96 | 0.77 | | (100, 100, 100) | 0 | 10.00 | 31.13 | | (100, 100, 100) | 1 | 7.33 | 9.17 | | (100, 100, 100) | 2 | 7.52 | 9.48 | M2 (time in milisecond) | input shape | axis | dnn | ort | | --------------- | ---- | ---- | ---- | | (1000, 100) | 0 | 0.76 | 2.44 | | (1000, 100) K5 | 0 | 0.68 | 0.07 | | (1000, 100) | 1 | 0.41 | 0.50 | | (100, 100, 100) | 0 | 4.83 | 17.52| | (100, 100, 100) | 1 | 3.60 | 5.08 | | (100, 100, 100) | 2 | 3.73 | 5.10 | ONNXRuntime performance testing script: https://gist.github.com/fengyuentau/a119f94fd16721ec9974b8c7b0a45d4c ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-08-21 22:03:24 +08:00
auto test = [&](const std::string &basename, double l1 = 0, double lInf = 0) {
std::string onnxmodel = _tf("models/" + basename + ".onnx", true);
Mat input = readTensorFromONNX(_tf("data/input_" + basename + ".pb"));
Mat output_ref_val = readTensorFromONNX(_tf("data/output_" + basename + "_0.pb")),
output_ref_ind = readTensorFromONNX(_tf("data/output_" + basename + "_1.pb"));
checkBackend(&input, &output_ref_val);
checkBackend(&input, &output_ref_ind);
Net net = readNetFromONNX(onnxmodel);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(input);
std::vector<Mat> outputs;
net.forward(outputs, std::vector<std::string>{"values", "indices"});
Mat output_res_val = outputs.front(),
output_res_ind = outputs.back();
2024-08-27 23:31:36 +08:00
Merge pull request #23279 from fengyuentau:add_topk dnn: add ONNX TopK #23279 Merge with https://github.com/opencv/opencv_extra/pull/1200 Partially fixes #22890 and #20258 To-do: - [x] TopK forward impl - [x] add tests - [x] support Opset 1 & 10 if possible - [ ] ~Support other backends~ (TopK has two outputs, which is not supported by other backends, such as openvino) Perf: M1 (time in millisecond) | input shape | axis | dnn | ort | | --------------- | ---- | ---- | ---- | | (1000, 100) | 0 | 1.68 | 4.07 | | (1000, 100) K5 | 0 | 1.13 | 0.12 | | (1000, 100) | 1 | 0.96 | 0.77 | | (100, 100, 100) | 0 | 10.00 | 31.13 | | (100, 100, 100) | 1 | 7.33 | 9.17 | | (100, 100, 100) | 2 | 7.52 | 9.48 | M2 (time in milisecond) | input shape | axis | dnn | ort | | --------------- | ---- | ---- | ---- | | (1000, 100) | 0 | 0.76 | 2.44 | | (1000, 100) K5 | 0 | 0.68 | 0.07 | | (1000, 100) | 1 | 0.41 | 0.50 | | (100, 100, 100) | 0 | 4.83 | 17.52| | (100, 100, 100) | 1 | 3.60 | 5.08 | | (100, 100, 100) | 2 | 3.73 | 5.10 | ONNXRuntime performance testing script: https://gist.github.com/fengyuentau/a119f94fd16721ec9974b8c7b0a45d4c ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-08-21 22:03:24 +08:00
normAssert(output_ref_val, output_res_val, (basename + " values").c_str(), l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
normAssert(output_ref_ind, output_res_ind, (basename + " indices").c_str(), l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
2024-08-27 23:31:36 +08:00
Merge pull request #23279 from fengyuentau:add_topk dnn: add ONNX TopK #23279 Merge with https://github.com/opencv/opencv_extra/pull/1200 Partially fixes #22890 and #20258 To-do: - [x] TopK forward impl - [x] add tests - [x] support Opset 1 & 10 if possible - [ ] ~Support other backends~ (TopK has two outputs, which is not supported by other backends, such as openvino) Perf: M1 (time in millisecond) | input shape | axis | dnn | ort | | --------------- | ---- | ---- | ---- | | (1000, 100) | 0 | 1.68 | 4.07 | | (1000, 100) K5 | 0 | 1.13 | 0.12 | | (1000, 100) | 1 | 0.96 | 0.77 | | (100, 100, 100) | 0 | 10.00 | 31.13 | | (100, 100, 100) | 1 | 7.33 | 9.17 | | (100, 100, 100) | 2 | 7.52 | 9.48 | M2 (time in milisecond) | input shape | axis | dnn | ort | | --------------- | ---- | ---- | ---- | | (1000, 100) | 0 | 0.76 | 2.44 | | (1000, 100) K5 | 0 | 0.68 | 0.07 | | (1000, 100) | 1 | 0.41 | 0.50 | | (100, 100, 100) | 0 | 4.83 | 17.52| | (100, 100, 100) | 1 | 3.60 | 5.08 | | (100, 100, 100) | 2 | 3.73 | 5.10 | ONNXRuntime performance testing script: https://gist.github.com/fengyuentau/a119f94fd16721ec9974b8c7b0a45d4c ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-08-21 22:03:24 +08:00
expectNoFallbacksFromIE(net);
};
test("top_k");
test("top_k_negative_axis");
test("top_k_smallest");
}
INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets());
}} // namespace