Commit Graph

363 Commits

Author SHA1 Message Date
Liubov Batanina
7eba3a7c96 Add pack description 2020-01-09 13:59:35 +03:00
Liubov Batanina
752653c70b Update global pooling 2019-12-28 18:03:40 +03:00
Brian Wignall
f9c514b391 Fix spelling typos
backport commit 659ffaddb4
2019-12-27 12:46:53 +00:00
Brian Wignall
659ffaddb4 Fix spelling typos 2019-12-26 06:45:03 -05:00
Liubov Batanina
543e0302d3 Support global pooling by axis 2019-12-24 16:16:58 +03:00
Alexander Alekhin
4c86fc13cb Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-12-19 15:09:05 +03:00
Alexander Alekhin
4342657762 Merge pull request #16034 from Quantizs:irLoadFromBuffer 2019-12-19 10:00:07 +00:00
antalzsiroscandid
aa80f754f4 dnn: reading IR models from buffer 2019-12-18 15:31:08 +01:00
Diego
5b0b59ecfb Merge pull request #15189 from dvd42:keypoints_module
Keypoints module
2019-12-13 18:00:06 +03:00
Alexander Alekhin
92b9888837 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-12-12 13:02:19 +03:00
Alexander Alekhin
5ee7abbe3c
Merge pull request #16088 from alalek:dnn_eltwise_layer_different_src_channels
dnn(eltwise): fix handling of different number of channels

* dnn(test): reproducer for Eltwise layer issue from PR16063

* dnn(eltwise): rework support for inputs with different channels

* dnn(eltwise): get rid of finalize(), variableChannels

* dnn(eltwise): update input sorting by number of channels

- do not swap inputs if number of channels are same after truncation

* dnn(test): skip "shortcut" with batch size 2 on MYRIAD targets
2019-12-11 20:16:58 +03:00
Alexander Alekhin
4b0132ed7a Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5 Merge pull request #15537 from l-bat:ngraph
* Support nGraph

* Fix resize
2019-12-02 16:16:06 +03:00
Manjunath Bhat
78c5e41c23 Merge pull request #15808 from thebhatman:Mish_swish
* Added Swish and Mish activations

* Fixed whitespace errors

* Kernel implementation done

* Added function for launching kernel

* Changed type of 1.0

* Attempt to add test for Swish and Mish

* Resolving type mismatch for log

* exp from device

* Use log1pexp instead of adding 1

* Added openCL kernels
2019-12-02 00:06:17 +03:00
thebhatman
8a18d132fc Port Swish and Mish layers 2019-12-01 11:55:39 +03:00
Alexander Alekhin
b6a58818bb Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-11-11 20:25:42 +00:00
Alexander Alekhin
055ffc0425 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-10-24 18:21:19 +00:00
Yashas Samaga B L
613c12e590 Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module

* stub cuda4dnn design

* minor fixes for tests and doxygen

* add csl public api directory to module headers

* add low-level CSL components

* add high-level CSL components

* integrate csl::Tensor into backbone code

* switch to CPU iff unsupported; otherwise, fail on error

* add fully connected layer

* add softmax layer

* add activation layers

* support arbitary rank TensorDescriptor

* pass input wrappers to `initCUDA()`

* add 1d/2d/3d-convolution

* add pooling layer

* reorganize and refactor code

* fixes for gcc, clang and doxygen; remove cxx14/17 code

* add blank_layer

* add LRN layer

* add rounding modes for pooling layer

* split tensor.hpp into tensor.hpp and tensor_ops.hpp

* add concat layer

* add scale layer

* add batch normalization layer

* split math.cu into activations.cu and math.hpp

* add eltwise layer

* add flatten layer

* add tensor transform api

* add asymmetric padding support for convolution layer

* add reshape layer

* fix rebase issues

* add permute layer

* add padding support for concat layer

* refactor and reorganize code

* add normalize layer

* optimize bias addition in scale layer

* add prior box layer

* fix and optimize normalize layer

* add asymmetric padding support for pooling layer

* add event API

* improve pooling performance for some padding scenarios

* avoid over-allocation of compute resources to kernels

* improve prior box performance

* enable layer fusion

* add const layer

* add resize layer

* add slice layer

* add padding layer

* add deconvolution layer

* fix channelwise  ReLU initialization

* add vector traits

* add vectorized versions of relu, clipped_relu, power

* add vectorized concat kernels

* improve concat_with_offsets performance

* vectorize scale and bias kernels

* add support for multi-billion element tensors

* vectorize prior box kernels

* fix address alignment check

* improve bias addition performance of conv/deconv/fc layers

* restructure code for supporting multiple targets

* add DNN_TARGET_CUDA_FP64

* add DNN_TARGET_FP16

* improve vectorization

* add region layer

* improve tensor API, add dynamic ranks

1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
  - size_range: computes the combined size of for a given axis range
  - tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability

* fix parametric relu activation

* add squeeze/unsqueeze tensor API

* add reorg layer

* optimize permute and enable 2d permute

* enable 1d and 2d slice

* add split layer

* add shuffle channel layer

* allow tensors of different ranks in reshape primitive

* patch SliceOp to allow Crop Layer

* allow extra shape inputs in reshape layer

* use `std::move_backward` instead of `std::move` for insert in resizable_static_array

* improve workspace management

* add spatial LRN

* add nms (cpu) to region layer

* add max pooling with argmax ( and a fix to limits.hpp)

* add max unpooling layer

* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA

* update supportBackend to be more rigorous

* remove stray include from preventing non-cuda build

* include op_cuda.hpp outside condition #if

* refactoring, fixes and many optimizations

* drop DNN_TARGET_CUDA_FP64

* fix gcc errors

* increase max. tensor rank limit to six

* add Interp layer

* drop custom layers; use BackendNode

* vectorize activation kernels

* fixes for gcc

* remove wrong assertion

* fix broken assertion in unpooling primitive

* fix build errors in non-CUDA build

* completely remove workspace from public API

* fix permute layer

* enable accuracy and perf. tests for DNN_TARGET_CUDA

* add asynchronous forward

* vectorize eltwise ops

* vectorize fill kernel

* fixes for gcc

* remove CSL headers from public API

* remove csl header source group from cmake

* update min. cudnn version in cmake

* add numerically stable FP32 log1pexp

* refactor code

* add FP16 specialization to cudnn based tensor addition

* vectorize scale1 and bias1 + minor refactoring

* fix doxygen build

* fix invalid alignment assertion

* clear backend wrappers before allocateLayers

* ignore memory lock failures

* do not allocate internal blobs

* integrate NVTX

* add numerically stable half precision log1pexp

* fix indentation, following coding style,  improve docs

* remove accidental modification of IE code

* Revert "add asynchronous forward"

This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.

* [cmake] throw error for unsupported CC versions

* fix rebase issues

* add more docs, refactor code, fix bugs

* minor refactoring and fixes

* resolve warnings/errors from clang

* remove haveCUDA() checks from supportBackend()

* remove NVTX integration

* changes based on review comments

* avoid exception when no CUDA device is present

* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Alexander Alekhin
48d41ab088 dnn: bump API version 2019-09-02 14:25:18 +03:00
Alexander Alekhin
70dfae31a2 experimental version++ 2019-09-02 14:17:36 +03:00
luz.paz
fcc7d8dd4e Fix modules/ typos
Found using `codespell -q 3 -S ./3rdparty -L activ,amin,ang,atleast,childs,dof,endwhile,halfs,hist,iff,nd,od,uint`

backporting of commit: ec43292e1e
2019-08-16 17:34:29 +03:00
luz.paz
ec43292e1e Fix modules/ typos
Found using `codespell -q 3 -S ./3rdparty -L activ,amin,ang,atleast,childs,dof,endwhile,halfs,hist,iff,nd,od,uint`
2019-08-15 18:02:09 -04:00
Diego
f7f2438478 Merge pull request #15082 from dvd42:segmentation-module
Segmentation module (#15082)
2019-08-13 23:38:48 +03:00
Dmitry Kurtaev
a9839af903 Add preprocessing warps for separate parameters 2019-08-07 14:51:41 +03:00
Lubov Batanina
778f42ad34 Add high level API (Merge pull request #14780)
* Add high level API

* Fix Model

* Add DetectionModel

* Add ClassificationModel

* Fix classify

* Add python test

* Fix pytest

* Fix comments to review

* Fix detect

* Fix docs

* Modify DetectionOutput postprocessing

* Fix test

* Extract ref boxes

* Fix draw rect

* fix test

* Add rect wrap

* Fix wrap

* Fix detect

* Fix Rect wrap

* Fix OCL_FP16

* Fix MyriadX

* Fix nms

* Fix NMS

* Fix coords
2019-07-30 23:07:37 +03:00
Alexander Alekhin
199ddff13b Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-07-18 20:25:25 +00:00
Lubov Batanina
12fdaf895e Merge pull request #15057 from l-bat:fix_vizualizer
* Fix dumpToFile

* Add test

* Fix test
2019-07-18 18:41:08 +03:00
Liubov Batanina
0d2bc7b5fd Fix TF Split layer 2019-07-17 15:50:50 +03:00
Alexander Alekhin
f84b08ff08 dnn: bump API version 2019-06-21 19:18:23 +03:00
Alexander Alekhin
f5ddaef46b experimental version++ 2019-06-21 16:57:17 +03:00
Alexander Alekhin
66d7956e67 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-06-15 16:25:11 +00:00
Dmitry Kurtaev
eba696a41e Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
* Remove Inference Engine 2018R3 and 2018R4

* Fix 2018R5
2019-06-14 18:17:02 +03:00
Alexander Alekhin
11b020b9f9 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-06-10 19:05:28 +00:00
Alexander Alekhin
6d916c5bb4 Merge pull request #14440 from alalek:async_array 2019-06-08 20:57:15 +00:00
Alexander Alekhin
43467a2ac7 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-05-28 18:29:48 +00:00
LaurentBerger
a3be8d7cd7 dead link 2019-05-27 21:57:10 +02:00
Alexander Alekhin
166ecaeda8 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-05-23 19:50:20 +03:00
Dmitry Kurtaev
26e426adb1 StridedSlice from TensorFlow 2019-05-22 12:45:52 +03:00
Alexander Alekhin
132253c9f3 dnn: use AsyncArray 2019-05-18 19:32:23 +00:00
Kohei Yoshida
7b4aefedea Add support for loading ONNX model from in-memory buffer. 2019-05-16 11:26:20 -04:00
Alexander Alekhin
e28e3c9491 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-05-01 08:27:45 +00:00
Lubov Batanina
77fa59c3da Merge pull request #14301 from l-bat:conv3d
Support Convolution3D layer on IE backend (#14301)

* Add Convolution3D layer

* Disable CXX11

* Fixed tests

* Add Pooling3D layer

* Merge Conv2d with Conv3d and Pool2d with Pool3d layers

* Split pads

* Add Deconvolution layer

* Refactoring

* Deduplication

* Refactoring

* Add utils for Convolution and Pooling layers
2019-04-30 17:08:17 +03:00
Alexander Alekhin
d0032b0717 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-04-22 18:17:28 +00:00
Dmitry Kurtaev
a5c92c2029 Merge pull request #13694 from dkurt:dnn_ie_async
Asynchronous API from Intel's Inference Engine (#13694)

* Add forwardAsync for asynchronous mode from Intel's Inference Engine

* Python test for forwardAsync

* Replace Future_Mat to AsyncMat

* Shadow AsyncMat

* Isolate InferRequest callback

* Manage exceptions in Async API of IE
2019-04-19 21:01:19 +03:00
Alexander Alekhin
c024edb9a8 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-04-19 15:43:58 +03:00
Alexander Alekhin
3902694075 static scans: preserve namespace name 2019-04-16 06:49:47 +00:00
Alexander Alekhin
4635356435 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-04-13 20:00:54 +00:00
Lubov Batanina
60a841c797 Merge pull request #14255 from l-bat:networks_visualization
* Add networks visualization

* Disable CXX11

* Fixed multy inputs support

* Added output shapes

* Added color for DLIE/CPU

* Fixed graph colors
2019-04-12 19:31:07 +03:00
Alexander Alekhin
7442100caa Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-03-29 19:29:36 +00:00
Lubov Batanina
7d3d6bc4e2 Merge pull request #13932 from l-bat:MyriadX_master_dldt
* Fix precision in tests for MyriadX

* Fix ONNX tests

* Add output range in ONNX tests

* Skip tests on Myriad OpenVINO 2018R5

* Add detect MyriadX

* Add detect MyriadX on OpenVINO R5

* Skip tests on Myriad next version of OpenVINO

* dnn(ie): VPU type from environment variable

* dnn(test): validate VPU type

* dnn(test): update DLIE test skip conditions
2019-03-29 16:42:58 +03:00
Alexander Alekhin
631b246881 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-01-22 18:00:34 +00:00
Alexander Alekhin
1dee705074 Merge branch '3.4' into merge-3.4 2018-12-22 05:40:15 +00:00
Dmitry Kurtaev
840c892abd Batch normalization in training phase from Torch 2018-12-21 14:36:55 +03:00
Alexander Alekhin
e82e672a93 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-12-06 07:06:58 +00:00
Alexander Alekhin
6fbf6f8bea Merge pull request #13359 from dkurt:dnn_keras_pad_concat 2018-12-05 19:48:58 +00:00
Maksim Shabunin
fe459c82e5 Merge pull request #13332 from mshabunin:dnn-backends
DNN backends registry (#13332)

* Added dnn backends registry

* dnn: process DLIE/FPGA target
2018-12-05 18:11:45 +03:00
Dmitry Kurtaev
c9e0c77d73 Concat layer from TensorFlow with constant inputs 2018-12-04 19:41:40 +03:00
Alexander Alekhin
7fa7fa0226 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-11-21 08:33:39 +00:00
Dmitry Kurtaev
0d117312c9 DNN_TARGET_FPGA using Intel's Inference Engine 2018-11-19 11:41:43 +03:00
Alexander Alekhin
22dbcf98c5 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-11-17 14:17:35 +00:00
Alexander Alekhin
dd3398416b experimental version++ 2018-11-17 10:22:17 +00:00
Alexander Alekhin
96c71dd3d2 dnn: reduce set of ignored warnings 2018-11-15 13:15:59 +03:00
WuZhiwen
6e3ea8b49d Merge pull request #12703 from wzw-intel:vkcom
* dnn: Add a Vulkan based backend

This commit adds a new backend "DNN_BACKEND_VKCOM" and a
new target "DNN_TARGET_VULKAN". VKCOM means vulkan based
computation library.

This backend uses Vulkan API and SPIR-V shaders to do
the inference computation for layers. The layer types
that implemented in DNN_BACKEND_VKCOM include:
Conv, Concat, ReLU, LRN, PriorBox, Softmax, MaxPooling,
AvePooling, Permute

This is just a beginning work for Vulkan in OpenCV DNN,
more layer types will be supported and performance
tuning is on the way.

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>

* dnn/vulkan: Add FindVulkan.cmake to detect Vulkan SDK

In order to build dnn with Vulkan support, need installing
Vulkan SDK and setting environment variable "VULKAN_SDK" and
add "-DWITH_VULKAN=ON" to cmake command.

You can download Vulkan SDK from:
https://vulkan.lunarg.com/sdk/home#linux

For how to install, see
https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/getting_started.html
https://vulkan.lunarg.com/doc/sdk/latest/mac/getting_started.html
respectively for linux, windows and mac.

To run the vulkan backend, also need installing mesa driver.
On Ubuntu, use this command 'sudo apt-get install mesa-vulkan-drivers'

To test, use command '$BUILD_DIR/bin/opencv_test_dnn --gtest_filter=*VkCom*'

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>

* dnn/Vulkan: dynamically load Vulkan runtime

No compile-time dependency on Vulkan library.
If Vulkan runtime is unavailable, fallback to CPU path.

Use environment "OPENCL_VULKAN_RUNTIME" to specify path to your
own vulkan runtime library.

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>

* dnn/Vulkan: Add a python script to compile GLSL shaders to SPIR-V shaders

The SPIR-V shaders are in format of text-based 32-bit hexadecimal
numbers, and inserted into .cpp files as unsigned int32 array.

* dnn/Vulkan: Put Vulkan headers into 3rdparty directory and some other fixes

Vulkan header files are copied from
https://github.com/KhronosGroup/Vulkan-Docs/tree/master/include/vulkan
to 3rdparty/include

Fix the Copyright declaration issue.

Refine OpenCVDetectVulkan.cmake

* dnn/Vulkan: Add vulkan backend tests into existing ones.

Also fixed some test failures.

- Don't use bool variable as uniform for shader
- Fix dispathed group number beyond max issue
- Bypass "group > 1" convolution. This should be support in future.

* dnn/Vulkan: Fix multiple initialization in one thread.
2018-10-29 17:51:26 +03:00
Alexander Alekhin
a8b0db4e5d Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-28 14:14:47 +03:00
Dmitry Kurtaev
f8398d80bc add Net::getUnconnectedOutLayersNames method 2018-09-25 18:10:45 +03:00
Hamdi Sahloul
ef5579dc86 Merge pull request #12310 from cv3d:chunks/enum_interface
* Cleanup macros and enable expansion of `__VA_ARGS__` for Visual Studio

* Macros for enum-arguments backwards compatibility

* Convert struct Param to enum struct

* Enabled ParamType.type for enum types

* Enabled `cv.read` and `cv.write` for enum types

* Rename unnamed enum to AAKAZE.DescriptorType

* Rename unnamed enum to AccessFlag

* Rename unnamed enum to AgastFeatureDetector.DetectorType

* Convert struct DrawMatchesFlags to enum struct

* Rename unnamed enum to FastFeatureDetector.DetectorType

* Rename unnamed enum to Formatter.FormatType

* Rename unnamed enum to HOGDescriptor.HistogramNormType

* Rename unnamed enum to DescriptorMatcher.MatcherType

* Rename unnamed enum to KAZE.DiffusivityType

* Rename unnamed enum to ORB.ScoreType

* Rename unnamed enum to UMatData.MemoryFlag

* Rename unnamed enum to _InputArray.KindFlag

* Rename unnamed enum to _OutputArray.DepthMask

* Convert normType enums to static const NormTypes

* Avoid conflicts with ElemType

* Rename unnamed enum to DescriptorStorageFormat
2018-09-21 18:12:35 +03:00
Alexander Alekhin
861415133e Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-19 10:58:43 +03:00
Dmitry Kurtaev
8ac7b21716 Enable Myriad device for OpenVINO models test 2018-09-18 13:49:24 +03:00
Alexander Alekhin
e6171d17f8 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-18 12:49:52 +03:00
Lubov Batanina
43f889ae1f Merge pull request #12519 from l-bat:l-bat/onnx_parser
Support asymmetric padding in pooling layer (#12519)

* Add Inception_V1 support in ONNX

* Add asymmetric padding in OpenCL and Inference engine

* Refactoring
2018-09-17 20:26:17 +03:00
Alexander Alekhin
808ba552c5 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-14 23:44:35 +00:00
Dmitry Kurtaev
58ac3e09da Change default value of crop argument of blobFromImage from true to false 2018-09-12 19:02:58 +03:00
Marat K
38f8fc6c82 Merge pull request #12249 from kopytjuk:feature/region-layer-batch-mode
Feature/region layer batch mode (#12249)

* Add batch mode for Darknet networks.

Swap variables in test_darknet.

Adapt reorg layer to batch mode.

Adapt region layer.

Add OpenCL implementation.

Remove trailing whitespace.

Bugifx reorg opencl implementation.

Fix bug in OpenCL reorg.

Fix modulo bug.

Fix bug.

Reorg openCL.

Restore reorg layer opencl code.

OpenCl fix.

Work on openCL reorg.

Remove whitespace.

Fix openCL region layer implementation.

Fix bug.

Fix softmax region opencl bug.

Fix opencl bug.

Fix openCL bug.

Update aff_trans.cpp

When the fullAffine parameter is set to false, the estimateRigidTransform function maybe return empty, then the _localAffineEstimate function will be called, but the bug in it will result in incorrect results.

core(libva): support YV12 too

Added to CPU path only.
OpenCL code path still expects NV12 only (according to Intel OpenCL extension)

cmake: allow to specify own libva paths

via CMake:
- `-DVA_LIBRARIES=/opt/intel/mediasdk/lib64/libva.so.2\;/opt/intel/mediasdk/lib64/libva-drm.so.2`

android: NDK17 support

tested with NDK 17b (17.1.4828580)

Enable more deep learning tests using Intel's Inference Engine backend

ts: don't pass NULL for std::string() constructor

openvino: use 2018R3 defines

experimental version++

OpenCV version++

OpenCV 3.4.3

OpenCV version '-openvino'

openvino: use 2018R3 defines

Fixed windows build with InferenceEngine

dnn: fix variance setting bug for PriorBoxLayer

- The size of second channel should be size[2] of output tensor,
- The Scalar should be {variance[0], variance[0], variance[0], variance[0]}
  for _variance.size() == 1 case.

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>

Fix lifetime of networks which are loaded from Model Optimizer IRs

Adds a small note describing BUILD_opencv_world (#12332)

* Added a mall note describing BUILD_opencv_world cmake option to the Installation in Windows tutorial.

* Made slight changes in BUILD_opencv_world documentation.

* Update windows_install.markdown

improved grammar

Update opengl_interop.cpp

resolves #12307

java: fix LIST_GET macro

fix typo

Added option to fail on missing testdata

Fixed that object_detection.py does not work in python3.

cleanup: IPP Async (IPP_A)

except header file with conversion routines (will be removed in OpenCV 4.0)

imgcodecs: add null pointer check

Include preprocessing nodes to object detection TensorFlow networks (#12211)

* Include preprocessing nodes to object detection TensorFlow networks

* Enable more fusion

* faster_rcnn_resnet50_coco_2018_01_28 test

countNonZero function reworked to use wide universal intrinsics instead of SSE2 intrinsics

resolve #5788

imgcodecs(webp): multiple fixes

- don't reallocate passed 'img' (test fixed - must use IMREAD_UNCHANGED / IMREAD_ANYCOLOR)
- avoid memory DDOS
- avoid reading of whole file during header processing
- avoid data access after allocated buffer during header processing (missing checks)
- use WebPFree() to free allocated buffers (libwebp >= 0.5.0)
- drop unused & undefined `.close()` method
- added checks for channels >= 5 in encoder

ml: fix adjusting K in KNearest (#12358)

dnn(perf): fix and merge Convolution tests

- OpenCL tests didn't run any OpenCL kernels
- use real configuration from existed models (the first 100 cases)
- batch size = 1

dnn(test): use dnnBackendsAndTargets() param generator

Bit-exact resize reworked to use wide intrinsics (#12038)

* Bit-exact resize reworked to use wide intrinsics

* Reworked bit-exact resize row data loading

* Added bit-exact resize row data loaders for SIMD256 and SIMD512

* Fixed type punned pointer dereferencing warning

* Reworked loading of source data for SIMD256 and SIMD512 bit-exact resize

Bit-exact GaussianBlur reworked to use wide intrinsics (#12073)

* Bit-exact GaussianBlur reworked to use wide intrinsics

* Added v_mul_hi universal intrinsic

* Removed custom SSE2 branch from bit-exact GaussianBlur

* Removed loop unrolling for gaussianBlur horizontal smoothing

doc: fix English gramma in tutorial out-of-focus-deblur filter (#12214)

* doc: fix English gramma in tutorial out-of-focus-deblur filter

* Update out_of_focus_deblur_filter.markdown

slightly modified one sentence

doc: add new tutorial motion deblur filter (#12215)

* doc: add new tutorial motion deblur filter

* Update motion_deblur_filter.markdown

a few minor changes

Replace Slice layer to Crop in Faster-RCNN networks from Caffe

js: use generated list of OpenCV headers

- replaces hand-written list

imgcodecs(webp): use safe cast to size_t on Win32

* Put Version status back to -dev.

follow the common codestyle

Exclude some target engines.

Refactor formulas.

Refactor code.

* Remove unused variable.

* Remove inference engine check for yolov2.

* Alter darknet batch tests to test with two different images.

* Add yolov3 second image GT.

* Fix bug.

* Fix bug.

* Add second test.

* Remove comment.

* Add NMS on network level.

* Add helper files to dev.

* syntax fix.

* Fix OD sample.

Fix sample dnn object detection.

Fix NMS boxes bug.

remove trailing whitespace.

Remove debug function.

Change thresholds for opencl tests.

* Adapt score diff and iou diff.

* Alter iouDiffs.

* Add debug messages.

* Adapt iouDiff.

* Fix tests
2018-09-12 13:29:43 +03:00
Lubov Batanina
0c8590027f Merge pull request #12071 from l-bat/l-bat:onnx_parser
* Add Squeezenet support in ONNX

* Add AlexNet support in ONNX

* Add Googlenet support in ONNX

* Add CaffeNet and RCNN support in ONNX

* Add VGG16 and VGG16 with batch normalization support in ONNX

* Add RCNN, ZFNet, ResNet18v1 and ResNet50v1 support in ONNX

* Add ResNet101_DUC_HDC

* Add Tiny Yolov2

* Add CNN_MNIST, MobileNetv2 and LResNet100 support in ONNX

* Add ONNX models for emotion recognition

* Add DenseNet121 support in ONNX

* Add Inception v1 support in ONNX

* Refactoring

* Fix tests

* Fix tests

* Skip unstable test

* Modify Reshape operation
2018-09-10 21:07:51 +03:00
Alexander Alekhin
dca657a2fd Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-10 00:10:21 +03:00
Hamdi Sahloul
a39e0daacf Utilize CV_UNUSED macro 2018-09-07 20:33:52 +09:00
Alexander Alekhin
73bfe68821 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-07 12:40:27 +03:00
Dmitry Kurtaev
d486204a0d Merge pull request #12264 from dkurt:dnn_remove_forward_method
* Remove a forward method in dnn::Layer

* Add a test

* Fix tests

* Mark multiple dnn::Layer::finalize methods as deprecated

* Replace back dnn's inputBlobs to vector of pointers

* Remove Layer::forward_fallback from CV_OCL_RUN scopes
2018-09-06 13:26:47 +03:00
Alexander Alekhin
d74b98c3d9 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-09-04 18:39:03 +00:00
Alexander Alekhin
f10fd64630 dnn: update "guard" inline namespace
- differ from 3.4 branch
2018-09-03 20:46:57 +00:00
Dmitry Kurtaev
c7cf8fb35c Import SSDs from TensorFlow by training config (#12188)
* Remove TensorFlow and protobuf dependencies from object detection scripts

* Create text graphs for TensorFlow object detection networks from sample
2018-09-03 17:08:40 +03:00
Alexander Alekhin
c1db75e0c7 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-08-29 16:24:56 +03:00
Alexander Alekhin
b38c50b3d0 OpenCV 3.4.3 2018-08-28 15:58:21 +03:00
Alexander Alekhin
6477262e63 Merge pull request #12306 from berak:python_nmsboxes 2018-08-25 16:35:00 +00:00
berak
21f3987d53 python: add support for NMSBoxes 2018-08-25 08:44:45 +02:00
Alexander Alekhin
6356403964 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-08-22 17:38:51 +03:00
Alexander Alekhin
5ac9a2a7d0 Merge pull request #12219 from alalek:fix_assert_messages 2018-08-21 12:46:35 +00:00
Alexander Alekhin
7d4bb9428b Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-08-20 19:30:18 +03:00
Alexander Alekhin
31fef14d76 Merge pull request #12136 from sturkmen72:update_documentation 2018-08-17 14:02:20 +00:00
Suleyman TURKMEN
c61bc3a0cb Update documentation and samples 2018-08-17 14:21:29 +03:00
Alexander Alekhin
d2e08a524e core: repair CV_Assert() messages
Multi-argument CV_Assert() is accessible via CV_Assert_N() (with malformed messages).
2018-08-15 17:43:10 +03:00
Alexander Alekhin
781721ca50 experimental version++ 2018-08-14 14:10:37 +03:00
Alexander Alekhin
e76b375a31 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-08-13 18:57:57 +03:00
Alexander Alekhin
4eb2966559 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-08-07 20:12:10 +03:00
Alexander Alekhin
a56b221559 core: cv::Range() ostream write operator
remove from DNN module headers
2018-08-07 20:03:21 +03:00
Dmitry Kurtaev
be08730cd6 MVN layer using Intel's Inference Engine backend 2018-08-02 17:49:03 +03:00
Alexander Alekhin
82c477c9f7 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-07-31 21:35:00 +03:00
Alexander Alekhin
9137e2d635 Merge pull request #12060 from alalek:dnn_debug_layers 2018-07-26 15:14:32 +00:00
Dmitry Kurtaev
faa6c4e1e1 Faster-RCNN anf RFCN models on CPU using Intel's Inference Engine backend.
Enable Torch layers tests with Intel's Inference Engine backend.
2018-07-25 19:04:55 +03:00
Alexander Alekhin
45b5b3c13a dnn: check layer output for NaN/Inf 2018-07-25 16:25:18 +03:00
Alexander Alekhin
9787ab598b Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-07-24 22:48:54 +03:00
Dmitry Kurtaev
070393dfda uint8 inputs for deep learning networks 2018-07-19 14:37:33 +03:00
Alexander Alekhin
4560909a5e Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-07-17 19:27:48 +03:00
Dmitry Kurtaev
8b5f061dae Replace std::vector<char> to std::vector<uchar> for Java bindings of dnn importers 2018-07-11 18:58:56 +03:00
Dmitry Kurtaev
d57e5406f0 Add readNet* functions which parse models from byte arrays 2018-07-10 11:12:01 +03:00
Alexander Alekhin
2da96be217 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-07-09 19:44:51 +03:00
asciian
61d8719b8d Reading net from std::ifstream
Remove some assertions

Replace std::ifstream to std::istream

Add test for new importer

Remove constructor to load file

Rename cfgStream and darknetModelStream to ifile

Add error notification to inform pathname to user

Use FileStorage instead of std::istream

Use FileNode instead of FileStorage

Fix typo
2018-07-09 10:02:05 +03:00
Alexander Alekhin
9e1b1e5389 OpenCV 3.4.2 2018-07-04 14:05:47 +03:00
Alexander Alekhin
b39cd06249 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-06-25 22:03:17 +03:00
Dmitry Kurtaev
e8e9d1d021 Implement Interp layer using Resize layer 2018-06-22 19:26:47 +03:00
Dmitry Kurtaev
4626246087 Add ShuffleChannel layer 2018-06-21 19:10:42 +03:00
Alexander Alekhin
0d6518aaa0 Merge remote-tracking branch 'upstream/3.4' into merge-3.4
OpenCV FFmpeg wrapper download links are preserved from ffmpeg/master branch
2018-06-13 19:34:44 +03:00
Alexander Alekhin
ab11b17d4b experimental version++ 2018-06-10 10:20:38 +03:00
David
7175f257b5 Added ResizeBilinear op for tf (#11050)
* Added ResizeBilinear op for tf

Combined ResizeNearestNeighbor and ResizeBilinear layers into Resize (with an interpolation param).

Minor changes to tf_importer and resize layer to save some code lines

Minor changes in init.cpp

Minor changes in tf_importer.cpp

* Replaced implementation of a custom ResizeBilinear layer to all layers

* Use Mat::ptr. Replace interpolation flags
2018-06-07 16:29:04 +03:00
Vadim Pisarevsky
3cbd2e2764 Merge pull request #11650 from dkurt:dnn_default_backend 2018-06-06 09:30:39 +00:00
Alexander Alekhin
45dd575ed2 Merge remote-tracking branch 'upstream/3.4' into merge-3.4
Revert "documentation: avoid links to 'master' branch from 3.4 maintenance branch"
This reverts commit 9ba9358ecb.

Revert "documentation: avoid links to 'master' branch from 3.4 maintenance branch (2)"
This reverts commit f185802489.
2018-06-04 19:26:10 +03:00
Dmitry Kurtaev
b781ac7346 Make Intel's Inference Engine backend is default if no preferable backend is specified. 2018-06-04 18:31:46 +03:00
Kuang Fangjun
9ae28415ec fix doc. 2018-06-03 17:44:24 +08:00
Vadim Pisarevsky
c58cc4c2ff Merge pull request #11255 from dkurt:dnn_tf_faster_rcnn 2018-05-31 11:07:39 +00:00
Dmitry Kurtaev
f96f934426 Update Intel's Inference Engine deep learning backend (#11587)
* Update Intel's Inference Engine deep learning backend

* Remove cpu_extension dependency

* Update Darknet accuracy tests
2018-05-31 14:05:21 +03:00
Dmitry Kurtaev
bf87a43185 Faster-RCNN object detection models from TensorFlow 2018-05-30 17:12:36 +03:00
Dmitry Kurtaev
2c3c59d018 Remove Shift deep learning layer 2018-05-28 18:18:56 +03:00
Alexander Alekhin
0f298a4203 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-05-28 11:22:55 +00:00
Alexander Alekhin
db88cd1b25 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-05-21 16:20:14 +03:00
Dmitry Kurtaev
8488f2e265 EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2) 2018-05-11 14:55:42 +03:00
Alexander Alekhin
000a13b6a3 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-05-03 14:30:38 +00:00
Alexander Alekhin
8c349ff8ff core: added MatSize::dims() method
to avoid accessing of 'p[-1]' (static code analysers dislike this)
2018-04-27 16:57:29 +03:00
Alexander Alekhin
4e83f4c579 core: drop cv::errorNoReturn()
replaced to cv::error()
2018-04-25 15:07:18 +03:00
Alexander Alekhin
6b581c4e51 build: unreachable code after CV_Error() (part 2) 2018-04-24 16:03:40 +03:00
Dmitry Kurtaev
4ec456f0a0 Custom layers for deep learning networks (#11129)
* Custom deep learning layers support

* Stack custom deep learning layers
2018-04-24 14:59:59 +03:00
Dmitry Kurtaev
66ce8cd7ea Fix bugs found by valgrind 2018-04-17 17:53:51 +03:00
Vadim Pisarevsky
533bb89800 Merge pull request #11236 from dkurt:dnn_fuse_l2_norm 2018-04-11 15:09:55 +00:00
Dmitry Kurtaev
1ba72ca0d3 Fuse tf.nn.l2_normalize layer 2018-04-10 10:12:44 +03:00
Dmitry Kurtaev
709cf5d038 OpenCL GPU target for Inference Engine deep learning backend
Enable FP16 GPU target for DL Inference Engine backend.
2018-04-09 17:21:35 +03:00
Alexander Alekhin
1060c0f439 dnn: apply CV_OVERRIDE/CV_FINAL 2018-03-28 18:43:27 +03:00
Dmitry Kurtaev
7972f47ed4 Load networks from intermediate representation of Intel's Deep learning deployment toolkit. 2018-03-26 07:24:21 +03:00
Dmitry Kurtaev
538fd42363 Add test for Scalar arguments at CommandLineParser 2018-03-13 11:01:07 +03:00
Dmitry Kurtaev
f2440ceae6 Update tutorials. A new cv::dnn::readNet function 2018-03-04 20:30:22 +03:00
Dmitry Kurtaev
e8d94ea87c Unite deep learning object detection samples 2018-03-03 14:47:13 +03:00
Alexander Alekhin
4a74408eee experimental version++ 2018-02-23 11:38:33 +03:00
Li Peng
2863f950d6 ReLU6 layer ocl support
include relu6 ocl kernel and layer fusion support

Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-20 15:11:09 +08:00
Dmitry Kurtaev
f8d0d6365e Add a flag to manage average pooling with padding 2018-02-14 16:56:31 +03:00
Dmitry Kurtaev
514e6df460 Refactored deep learning layers fusion 2018-02-13 14:35:58 +03:00
luz.paz
5718d09e39 Misc. modules/ typos
Found via `codespell`
2018-02-12 07:09:43 -05:00
Rémi Ratajczak
b67523550f dnn : Added an imagesFromBlob method to the dnn module (#10607)
* Added the imagesFromBlob method to the dnn module.

* Rewritten imagesFromBlob based on first dkurt comments

* Updated code with getPlane()

* Modify comment of imagesFromBlob() in dnn module

* modified comments, removed useless assertions & added OutputArrayOfArray

* replaced tabs with whitespaces & put vectorOfChannels instantiation outside the loop

* Changed pre-commit.sample to pre-commit in .git/hooks/

* Added a test for imagesFromBlob in test_misc.cpp (dnn)

* Changed nbOfImages, robustified test with cv::randu, modified assertion
2018-02-12 14:51:07 +03:00
Dmitry Kurtaev
10e1de74d2 Intel Inference Engine deep learning backend (#10608)
* Intel Inference Engine deep learning backend.

* OpenFace network using Inference Engine backend
2018-02-06 11:57:35 +03:00
Alexander Alekhin
1255bd8d4b Merge pull request #10585 from dkurt:dnn_weightless_scale 2018-01-15 06:07:50 +00:00
Dmitry Kurtaev
6a395d88ff dnn::blobFromImage with OutputArray 2018-01-13 18:20:24 +03:00
Dmitry Kurtaev
1f4fdfd599 Untrainable version of Scale layer from Caffe 2018-01-13 10:35:29 +03:00
Vadim Pisarevsky
eecb64a973 Merge pull request #10331 from arrybn:python_dnn_net 2017-12-20 14:30:27 +00:00
Dmitry Kurtaev
0ed2cbc931 R-FCN models support 2017-12-20 10:43:22 +03:00
Dmitry Kurtaev
6aabd6cc7a Remove cv::dnn::Importer 2017-12-18 18:08:28 +03:00
Alexander Rybnikov
19c914db51 Changed wrapping mode for cv::dnn::Net::forward 2017-12-18 15:56:09 +03:00
Alexander Alekhin
3fddce67c6 experimental version++ 2017-12-16 01:30:36 +03:00
Dmitry Kurtaev
08112f3821 Faster-RCNN models support 2017-12-15 12:16:21 +03:00
Dmitry Kurtaev
f503515082 JavaScript bindings for dnn module 2017-12-08 18:33:48 +03:00
Dmitry Kurtaev
17dcf0e82d ROIPooling layer 2017-12-07 19:04:38 +03:00
Alexander Alekhin
f071a48ec7 Merge pull request #10143 from pengli:ocl4dnn 2017-11-23 18:47:14 +00:00
Li Peng
636d6368ee use OutputArrayOfArrays in net forward interface
It allows umat buffers used in net forward interface

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-24 02:19:10 +08:00
Alexander Alekhin
f37f4cf3b4 Merge pull request #9994 from r2d3:dnn_memory_load 2017-11-22 18:15:00 +00:00
David Geldreich
f723cede2e add loading TensorFlow/Caffe net from memory buffer
add a corresponding test
2017-11-20 16:28:22 +01:00
Li Peng
8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00
Dmitry Kurtaev
e1ebc4e991 Specify layer types for Caffe FP32->FP16 weights converter 2017-10-31 12:31:40 +03:00
Dmitry Kurtaev
4b52b8df34 Layers for fast-neural-style models: https://github.com/jcjohnson/fast-neural-style 2017-10-27 14:26:45 +03:00
Vadim Pisarevsky
bc93775385 Merge pull request #9862 from sovrasov:dnn_nms 2017-10-27 11:19:57 +00:00
Vladislav Sovrasov
5bf39ceb5d dnn: handle 4-channel images in blobFromImage (#9944) 2017-10-27 14:06:53 +03:00
Vladislav Sovrasov
7e3e9144de dnn: add an accuracy test for NMS 2017-10-25 13:40:56 +03:00
Vladislav Sovrasov
c704942b8a dnn: add a documentation for NMS, fix missing experimantal namespace 2017-10-25 13:35:49 +03:00
Vladislav Sovrasov
acedb4a579 dnn: make NMS function public 2017-10-25 13:35:49 +03:00
Alexander Alekhin
a871f9e4f7 Merge branch 'update_version' into release 2017-10-23 18:41:12 +03:00
Vadim Pisarevsky
e356ca2369 Merge pull request #9835 from sovrasov:blob_from_img_crop_opt 2017-10-11 17:18:40 +00:00
Vladislav Sovrasov
47e1133e71 dnn: add crop flag to blobFromImage 2017-10-11 15:46:20 +03:00
Dmitry Kurtaev
905a9dada2 Removed LPNormalize layer. 2017-10-10 20:38:55 +03:00
Vadim Pisarevsky
b7ff9ddcdd Merge pull request #9705 from AlexeyAB:dnn_darknet_yolo_v2 2017-10-10 12:02:03 +00:00
Vadim Pisarevsky
046045239c Merge pull request #9750 from dkurt:feature_dnn_tf_text_graph 2017-10-10 10:06:24 +00:00
Alexander Alekhin
949ec486c5 experimental version++ 2017-10-10 12:29:57 +03:00
AlexeyAB
ecc34dc521 Added DNN Darknet Yolo v2 for object detection 2017-10-09 21:08:44 +03:00
Dmitry Kurtaev
eabf728682 PReLU layer from Caffe 2017-10-09 20:30:37 +03:00
Dmitry Kurtaev
e4aa39f9e5 Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 2017-10-08 22:25:29 +03:00
Dmitry Kurtaev
b9f94c9315 Nearest neighbor resize layer 2017-10-06 14:33:26 +03:00
pengli
e340ff9c3a Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module  (#9114)

* import libdnn code

Signed-off-by: Li Peng <peng.li@intel.com>

* add convolution layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add pooling layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add softmax layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add lrn layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add innerproduct layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add HAVE_OPENCL macro

Signed-off-by: Li Peng <peng.li@intel.com>

* fix for convolution ocl

Signed-off-by: Li Peng <peng.li@intel.com>

* enable getUMat() for multi-dimension Mat

Signed-off-by: Li Peng <peng.li@intel.com>

* use getUMat for ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* use CV_OCL_RUN macro

Signed-off-by: Li Peng <peng.li@intel.com>

* set OPENCL target when it is available

and disable fuseLayer for OCL target for the time being

Signed-off-by: Li Peng <peng.li@intel.com>

* fix innerproduct accuracy test

Signed-off-by: Li Peng <peng.li@intel.com>

* remove trailing space

Signed-off-by: Li Peng <peng.li@intel.com>

* Fixed tensorflow demo bug.

Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.

libdnn don't calculate output dimension anymore and just use one
passed in by config.

* split gemm ocl file

split it into gemm_buffer.cl and gemm_image.cl

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix compile failure

Signed-off-by: Li Peng <peng.li@intel.com>

* check env flag for auto tuning

Signed-off-by: Li Peng <peng.li@intel.com>

* switch to new ocl kernels for softmax layer

Signed-off-by: Li Peng <peng.li@intel.com>

* update softmax layer

on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.

Signed-off-by: Li Peng <peng.li@intel.com>

* fallback to cpu path for fc layer with multi output

Signed-off-by: Li Peng <peng.li@intel.com>

* update output message

Signed-off-by: Li Peng <peng.li@intel.com>

* update fully connected layer

fallback to gemm API if libdnn return false

Signed-off-by: Li Peng <peng.li@intel.com>

* Add ReLU OCL implementation

* disable layer fusion for now

Signed-off-by: Li Peng <peng.li@intel.com>

* Add OCL implementation for concat layer

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>

* libdnn: update license and copyrights

Also refine libdnn coding style

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>

* DNN: Don't link OpenCL library explicitly

* DNN: Make default preferableTarget to DNN_TARGET_CPU

User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.

Also don't fusion when using DNN_TARGET_OPENCL

* DNN: refine coding style

* Add getOpenCLErrorString

* DNN: Use int32_t/uint32_t instread of alias

* Use namespace ocl4dnn to include libdnn things

* remove extra copyTo in softmax ocl path

Signed-off-by: Li Peng <peng.li@intel.com>

* update ReLU layer ocl path

Signed-off-by: Li Peng <peng.li@intel.com>

* Add prefer target property for layer class

It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.

Signed-off-by: Li Peng <peng.li@intel.com>

* Add cl_event based timer for cv::ocl

* Rename libdnn to ocl4dnn

Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>

* use UMat for ocl4dnn internal buffer

Remove allocateMemory which use clCreateBuffer directly

Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>

* enable buffer gemm in ocl4dnn innerproduct

Signed-off-by: Li Peng <peng.li@intel.com>

* replace int_tp globally for ocl4dnn kernels.

Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>

* create UMat for layer params

Signed-off-by: Li Peng <peng.li@intel.com>

* update sign ocl kernel

Signed-off-by: Li Peng <peng.li@intel.com>

* update image based gemm of inner product layer

Signed-off-by: Li Peng <peng.li@intel.com>

* remove buffer gemm of inner product layer

call cv::gemm API instead

Signed-off-by: Li Peng <peng.li@intel.com>

* change ocl4dnn forward parameter to UMat

Signed-off-by: Li Peng <peng.li@intel.com>

* Refine auto-tuning mechanism.

- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
  for fine-tuned kernel configuration.
  e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
  the cache directory will be /home/tmp/spatialkernels/ on Linux.

- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
  auto-tuning.

- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
  for OpenCL command queue. This fix basic kernel get wrong running
  time, i.e. 0ms.

- If creating cache directory failed, disable auto-tuning.

* Detect and create cache dir on windows

Signed-off-by: Li Peng <peng.li@intel.com>

* Refine gemm like convolution kernel.

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix redundant swizzleWeights calling when use cached kernel config.

* Fix "out of resource" bug when auto-tuning too many kernels.

* replace cl_mem with UMat in ocl4dnnConvSpatial class

* OCL4DNN: reduce the tuning kernel candidate.

This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.

Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>

* replace cl_mem with umat in ocl4dnn convolution

Signed-off-by: Li Peng <peng.li@intel.com>

* remove weight_image_ of ocl4dnn inner product

Actually it is unused in the computation

Signed-off-by: Li Peng <peng.li@intel.com>

* Various fixes for ocl4dnn

1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device

Signed-off-by: Li Peng <peng.li@intel.com>

* add build option for log softmax

Signed-off-by: Li Peng <peng.li@intel.com>

* remove unused ocl kernels in ocl4dnn

Signed-off-by: Li Peng <peng.li@intel.com>

* replace ocl4dnnSet with opencv setTo

Signed-off-by: Li Peng <peng.li@intel.com>

* replace ALIGN with cv::alignSize

Signed-off-by: Li Peng <peng.li@intel.com>

* check kernel build options

Signed-off-by: Li Peng <peng.li@intel.com>

* Handle program compilation fail properly.

* Use std::numeric_limits<float>::infinity() for large float number

* check ocl4dnn kernel compilation result

Signed-off-by: Li Peng <peng.li@intel.com>

* remove unused ctx_id

Signed-off-by: Li Peng <peng.li@intel.com>

* change clEnqueueNDRangeKernel to kernel.run()

Signed-off-by: Li Peng <peng.li@intel.com>

* change cl_mem to UMat in image based gemm

Signed-off-by: Li Peng <peng.li@intel.com>

* check intel subgroup support for lrn and pooling layer

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix convolution bug if group is greater than 1

Signed-off-by: Li Peng <peng.li@intel.com>

* Set default layer preferableTarget to be DNN_TARGET_CPU

Signed-off-by: Li Peng <peng.li@intel.com>

* Add ocl perf test for convolution

Signed-off-by: Li Peng <peng.li@intel.com>

* Add more ocl accuracy test

Signed-off-by: Li Peng <peng.li@intel.com>

* replace cl_image with ocl::Image2D

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix build failure in elementwise layer

Signed-off-by: Li Peng <peng.li@intel.com>

* use getUMat() to get blob data

Signed-off-by: Li Peng <peng.li@intel.com>

* replace cl_mem handle with ocl::KernelArg

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(build): don't use C++11, OPENCL_LIBRARIES fix

* dnn(ocl4dnn): remove unused OpenCL kernels

* dnn(ocl4dnn): extract OpenCL code into .cl files

* dnn(ocl4dnn): refine auto-tuning

Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.

Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50

If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.

* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups

* dnn(ocl4dnn): fix perf test

OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.

* use ocl::KernelArg as much as possible

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): fix bias bug for gemm like kernel

* dnn(ocl4dnn): wrap cl_mem into UMat

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): Refine signature of kernel config

- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
  24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.

* dnn(ocl4dnn): swap width/height in configuration

* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only

* core: make configuration helper functions accessible from non-core modules

* dnn(ocl4dnn): update kernel auto-tuning behavior

Avoid unwanted creation of directories

* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash

* dnn(ocl4dnn): remove redundant code

* dnn(ocl4dnn): Add more clear message for simd size dismatch.

* dnn(ocl4dnn): add const to const argument

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel

* dnn(ocl4dnn): drop unused tuneLocalSize()

* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method

* dnn(ocl4dnn): sanitize file names used for cache

* dnn(perf): enable Network tests with OpenCL

* dnn(ocl4dnn/conv): drop computeGlobalSize()

* dnn(ocl4dnn/conv): drop unused fields

* dnn(ocl4dnn/conv): simplify ctor

* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL

* dnn(ocl4dnn/conv): drop unsupported double / untested half types

* dnn(ocl4dnn/conv): drop unused variable

* dnn(ocl4dnn/conv): alignSize/divUp

* dnn(ocl4dnn/conv): use enum values

* dnn(ocl4dnn): drop unused innerproduct variable

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): add an generic function to check cl option support

* dnn(ocl4dnn): run softmax subgroup version kernel first

Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 15:38:00 +03:00
Vadim Pisarevsky
5e93c82023 Merge pull request #9491 from dkurt:tf_lstm 2017-09-28 21:04:06 +00:00
Vadim Pisarevsky
68cc2e292d Merge pull request #9734 from dkurt:fix_deconv_layer_kernel_layout 2017-09-28 11:42:57 +00:00
Dmitry Kurtaev
6e593cd1f0 Swap dimensions of deconvolution kernel 2017-09-27 22:38:34 +03:00
Dmitry Kurtaev
84cec17913 LSTM layer for TensorFlow importer 2017-09-26 12:59:36 +03:00
Dmitry Kurtaev
222149b9c6 Refactored Padding layer 2017-09-22 12:39:00 +03:00
Vadim Pisarevsky
f7df5dd32c Merge pull request #9305 from dkurt:public_dnn_importer_is_deprecated 2017-09-18 09:35:35 +00:00
Vadim Pisarevsky
e012ccda4a Merge pull request #9517 from dkurt:tf_mobilenet 2017-09-18 09:31:19 +00:00
Vadim Pisarevsky
3358b8910b Merge pull request #9591 from dkurt:feature_dnn_caffe_importer_fp16 2017-09-18 09:26:23 +00:00
Dmitry Kurtaev
bd8e6b7e14 Make external cv::dnn::Importer usage is deprecated 2017-09-18 08:52:36 +03:00
Vadim Pisarevsky
4196543cd5 Merge pull request #9313 from dkurt:dnn_perf_test 2017-09-16 19:39:23 +00:00
Dmitry Kurtaev
d891e9b1d8 Layers for MobileNet from TensorFlow 2017-09-15 20:17:30 +03:00
Dmitry Kurtaev
8646d5fb84 FP16 Caffe models import and export 2017-09-15 18:06:34 +03:00
Vadim Pisarevsky
41b23fde9f Merge pull request #9524 from dkurt:dnn_torch_openface 2017-09-15 12:38:12 +00:00
Dmitry Kurtaev
7dc6b1d7d4 Layers for OpenFace face recognition network 2017-09-14 09:11:31 +03:00
Vadim Pisarevsky
93c3f20deb Merge pull request #9569 from dkurt:test_dnn_ssd_halide 2017-09-13 13:29:50 +00:00
Dmitry Kurtaev
cad7c4d51d MobileNet-SSD and VGG-SSD topologies in Halide 2017-09-08 09:55:53 +03:00
Alexander Alekhin
01519313d7 dnn: invalid bindings 2017-08-31 19:35:48 +03:00
Dmitry Kurtaev
5c43a394c5 Added performance test for Caffe framework 2017-08-27 19:40:58 +03:00
Alexander Alekhin
25a4559565 Merge pull request #9294 from arrybn:layers_perf 2017-08-24 09:37:49 +00:00