- Use the same tools and plugins for SDK build and AAR build
- Added script to test Gradle-based samples against local maven repo
- Various local fixes and debug prints
Updated Android samples for modern Android studio. Added OpenCV from Maven support. #24473
Updated samples for recent Android studio:
- added namespace field that is required in build.gradle files
- replaced _switch_ by _if-else_ because it doesn't work with constants from resources
- added missed log library dependency in face-detection/jni/CMakeLists.txt
- use local.properties to define NDK location
Added support for OpenCV from Maven. Now you can choose 3 possible sources of OpenCV lib in settings.gradle: SDK path, local Maven repository, public Maven repository. (Creating Maven repository from SDK is added here #24456 )
There are differences in project configs for SDK and Maven versions:
- different dependencies in build.gradle
- different OpenCV library names in CMakeLists.txt
- SDK version requires OpenCV_DIR definition
Requires:
- https://github.com/opencv/ci-gha-workflow/pull/124
- https://github.com/opencv-infrastructure/opencv-gha-dockerfile/pull/26
Using cv2 dnn interface to run yolov8 model #24396
This is a sample code for using opencv dnn interface to run ultralytics yolov8 model for object detection.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [] The feature is well documented and sample code can be built with the project CMake
Add weights yolov3 in models.yml #24496
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
I don't know if this action is necessary, or the previous PR scale for the brach master.
Thanks.
Added PyTorch fcnresnet101 segmentation conversion cases #24397
We write a sample code about transforming Pytorch fcnresnet101 to ONNX running on OpenCV.
The input source image was shooted by ourself.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Remove torch (old torch7) from dnn in 5.x #24294
Merge with https://github.com/opencv/opencv_extra/pull/1097
Completely removed torch (old torch7) from dnn:
- removed modules/dnn/src/torch directory that contained torch7 model parser
- removed readNetFromTorch() and readTorchBlob() public functions
- removed torch7 references from comments and help texts
- replaced links to t7 models by links to similar onnx models in js_style_transfer turtorial (similar to https://github.com/opencv/opencv/pull/24245/files)
dnn: cleanup of halide backend for 5.x #24231
Merge with https://github.com/opencv/opencv_extra/pull/1092.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* attempt to add 0d/1d mat support to OpenCV
* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.
* a step towards 'green' tests
* another little step towards 'green' tests
* calib test failures seem to be fixed now
* more fixes _core & _dnn
* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!
* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core
* disabled failing GAPI tests - too complex to dig into this compiler pipeline
* hopefully fixed java tests
* trying to fix some more tests
* quick followup fix
* continue to fix test failures and warnings
* quick followup fix
* trying to fix some more tests
* partly fixed support for 0D/scalar UMat's
* use updated parseReduce() from upstream
* trying to fix the remaining test failures
* fixed [ch]aruco tests in Python
* still trying to fix tests
* revert "fix" in dnn's CUDA tensor
* trying to fix dnn+CUDA test failures
* fixed 1D umat creation
* hopefully fixed remaining cuda test failures
* removed training whitespaces
VIT track(gsoc realtime object tracking model) #24201
Vit tracker(vision transformer tracker) is a much better model for real-time object tracking. Vit tracker can achieve speeds exceeding nanotrack by 20% in single-threaded mode with ARM chip, and the advantage becomes even more pronounced in multi-threaded mode. In addition, on the dataset, vit tracker demonstrates better performance compared to nanotrack. Moreover, vit trackerprovides confidence values during the tracking process, which can be used to determine if the tracking is currently lost.
opencv_zoo: https://github.com/opencv/opencv_zoo/pull/194
opencv_extra: [https://github.com/opencv/opencv_extra/pull/1088](https://github.com/opencv/opencv_extra/pull/1088)
# Performance comparison is as follows:
NOTE: The speed below is tested by **onnxruntime** because opencv has poor support for the transformer architecture for now.
ONNX speed test on ARM platform(apple M2)(ms):
| thread nums | 1| 2| 3| 4|
|--------|--------|--------|--------|--------|
| nanotrack| 5.25| 4.86| 4.72| 4.49|
| vit tracker| 4.18| 2.41| 1.97| **1.46 (3X)**|
ONNX speed test on x86 platform(intel i3 10105)(ms):
| thread nums | 1| 2| 3| 4|
|--------|--------|--------|--------|--------|
| nanotrack|3.20|2.75|2.46|2.55|
| vit tracker|3.84|2.37|2.10|2.01|
opencv speed test on x86 platform(intel i3 10105)(ms):
| thread nums | 1| 2| 3| 4|
|--------|--------|--------|--------|--------|
| vit tracker|31.3|31.4|31.4|31.4|
preformance test on lasot dataset(AUC is the most important data. Higher AUC means better tracker):
|LASOT | AUC| P| Pnorm|
|--------|--------|--------|--------|
| nanotrack| 46.8| 45.0| 43.3|
| vit tracker| 48.6| 44.8| 54.7|
[https://youtu.be/MJiPnu1ZQRI](https://youtu.be/MJiPnu1ZQRI)
In target tracking tasks, the score is an important indicator that can indicate whether the current target is lost. In the video, vit tracker can track the target and display the current score in the upper left corner of the video. When the target is lost, the score drops significantly. While nanotrack will only return 0.9 score in any situation, so that we cannot determine whether the target is lost.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix python sample code (tst_scene_render) #24116
Fix bug of python sample code (samples/python/tst_scene_render.py) when backGr or fgr is None (#24114)
1) pass shape tuple to np.zeros arguments instead of integers
2) change np.int to int
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [o] I agree to contribute to the project under Apache 2 License.
- [o] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [o] The PR is proposed to the proper branch
- [o] There is a reference to the original bug report and related work
- [o] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [o] The feature is well documented and sample code can be built with the project CMake
- Fixed width and height swap in board size
- Fixed defaults in command line hint
- Fixed board visualization for Charuco case
- Used matchImagePoints method to handle partially detected Charuco boards
add ChArUco board pattern into calib3d/camera_calibration #23575
Added opportunity to calibrate camera using ChArUco board pattern in /samples/cpp/tutorial_code/calib3d/camera_calibration/caera_calibration.cpp
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added charuco board generation to gen_pattern.py #23363
added charuco board generation in gen_pattern.py
moved aruco_dict_utils.cpp to samples from opencv_contrib (https://github.com/opencv/opencv_contrib/pull/3464)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added charuco pattern into calibrate.py #23587
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Improve document of cv::RotatedRect for #23335#23342fix#23335
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add charuco pattern into calibration.cpp #23486
Added charuco pattern into calibration.cpp. Added charuco pattern with predefined aruco dictionary and with dictionary from file.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [х] I agree to contribute to the project under Apache 2 License.
- [х] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [х] The PR is proposed to the proper branch
- [х] There is a reference to the original bug report and related work
- [х] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [х] The feature is well documented and sample code can be built with the project CMake
Add python sample of how to use Orbbec camera. #23531
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix image loading in tutorials code #23442
Fixes https://github.com/opencv/opencv/issues/23378
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Add multiview calibration [GSOC 2022]
### Pull Request Readiness Checklist
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
The usage tutorial is on Google Docs following this link: https://docs.google.com/document/d/1k6YpD0tpSVqnVnvU2nzE34K3cp_Po6mLWqXV06CUHwQ/edit?usp=sharing
Merge with https://github.com/opencv/opencv_contrib/pull/3446
Related issue: https://github.com/opencv/opencv/issues/11810
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Usage of imread(): magic number 0, unchecked result
* docs: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* samples, apps: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* tests: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* doc/py_tutorials: check imread() result
Fixes#22799
Replaces #21559 which was taken as a base
Connected PR in contrib: [#3388@contrib](https://github.com/opencv/opencv_contrib/pull/3388)
### Changes
OK, now this is more Odometry-related PR than Volume-related. Anyway,
* `Volume` class gets wrapped
* The same was done for helper classes like `VolumeSettings`, `OdometryFrame` and `OdometrySettings`
* `OdometryFrame` constructor signature changed to more convenient where depth goes on 1st place, RGB image on 2nd.
This works better for depth-only `Odometry` algorithms.
* `OdometryFrame` is checked for amount of pyramid layers inside `Odometry::compute()`
* `Odometry` was fully wrapped + more docs added
* Added Python tests for `Odometry`, `OdometryFrame` and `Volume`
* Added Python sample for `Volume`
* Minor fixes including better var names
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
[teset data in opencv_extra](https://github.com/opencv/opencv_extra/pull/1016)
NanoTrack is an extremely lightweight and fast object-tracking model.
The total size is **1.1 MB**.
And the FPS on M1 chip is **150**, on Raspberry Pi 4 is about **30**. (Float32 CPU only)
With this model, many users can run object tracking on the edge device.
The author of NanoTrack is @HonglinChu.
The original repo is https://github.com/HonglinChu/NanoTrack.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
* cmake: Fix DirectX detection in mingw
The pragma comment directive is valid for MSVC only. So, the DirectX detection
fails in mingw. The failure is fixed by adding the required linking library
(here d3d11) in the try_compile() function in OpenCVDetectDirectX.cmake file.
Also add a message if the first DirectX check fails.
* gapi: Fix compilation with mingw
These changes remove MSVC specific pragma directive. The compilation fails at
linking time due to absence of proper linking library. The required libraries
are added in corresponding CMakeLists.txt file.
* samples: Fix compilation with mingw
These changes remove MSVC specific pragma directive. The compilation fails at
linking time due to absence of proper linking library. The required libraries
are added in corresponding CMakeLists.txt file.
Add -imshow-scale flag to resize the image when displaying the results.
Add -enable-k3 flag to enable or disable the estimation of the K3 distortion coefficient.
Add flags to set the camera intrinsic parameters as an initial guess (can allow converging to the correct camera intrinsic parameters).
Add -imshow-scale flag to resize the image when displaying the results.
Add -enable-k3 flag to enable or disable the estimation of the K3 distortion coefficient.