DNN: reduce the memory used in convolution layer
* reduce the memory in winograd and disabel the test when usage memory is larger than 2gb.
* remove VERY_LOG tag
DNN: let Quant and Dequant of ONNX_importer support the Constant input.
* let Quant and Dequant support the Constant input.
* fix negative value of axis.
Reimplementation of Element-wise layers with broadcasting support
* init
* semi-working initial version
* add small_vector
* wip
* remove smallvec
* add nary function
* replace auto with Mat in lambda expr used in transform
* uncomment asserts
* autobuffer shape_buf & step_buf
* fix a missing bracket
* fixed a missing addLayer in parseElementWise
* solve one-dimensional broadcast
* remove pre_broadcast_transform for the case of two constants; fix missing constBlobsExtraInfo when addConstant is called
* one autobuffer for step & shape
* temporal fix for the missing original dimension information
* fix parseUnsqueeze when it gets a 1d tensor constant
* support sum/mean/min/max with only one input
* reuse old code to handle cases of two non-constant inputs
* add condition to handle div & mul of two non-constant inputs
* use || instead of or
* remove trainling spaces
* enlarge buf in binary_forward to contain other buffer
* use autobuffer in nary_forward
* generate data randomly and add more cases for perf
* add op and, or & xor
* update perf_dnn
* remove some comments
* remove legacy; add two ONNX conformance tests in filter
* move from cpu_denylist to all_denylist
* adjust parsing for inputs>=2
Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
Add per_tensor_quantize to int8 quantize
* add per_tensor_quantize to dnn int8 module.
* change api flag from perTensor to perChannel, and recognize quantize type and onnx importer.
* change the default to hpp
DNN: Accelerating convolution
* Fast Conv of ARM, X86 and universal intrinsics.
* improve code style.
* error fixed.
* improve the License
* optimize memory allocated and Adjust the threshold.
* change FasterRCNN_vgg16 to 2GB memory.
Fix issue 22015, let Clip layer support 1-3 inputs
* Fix issue 22015.
Let layer Clip support 1-3 inputs.
* Resolve other problems caused by modifications
* Update onnx_importer.cpp
added extra checks to min/max handling in Clip
* Add assertions to check the size of the input
* Add test for clip with min and max initializers
* Separate test for "clip_init_min_max". Change the check method for input_size to provide a clearer message in case of problem.
* Add tests for clip with min or max initializers
* Change the implementation of getting input
Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
Fix LSTM support in ONNX
* fix LSTM and add peephole support
* disable old tests
* turn lambdas into functions
* more hacks for c++98
* add assertions
* slice fixes
* backport of cuda-related fixes
* address review comments
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN
* Add WebNN backend for OpenCV DNN Module
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Add WebNN head files into OpenCV 3rd partiy files
Create webnn.hpp
update cmake
Complete README and add OpenCVDetectWebNN.cmake file
add webnn.cpp
Modify webnn.cpp
Can successfully compile the codes for creating a MLContext
Update webnn.cpp
Update README.md
Update README.md
Update README.md
Update README.md
Update cmake files and
update README.md
Update OpenCVDetectWebNN.cmake and README.md
Update OpenCVDetectWebNN.cmake
Fix OpenCVDetectWebNN.cmake and update README.md
Add source webnn_cpp.cpp and libary libwebnn_proc.so
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
update dnn.cpp
update op_webnn
update op_webnn
Update op_webnn.hpp
update op_webnn.cpp & hpp
Update op_webnn.hpp
Update op_webnn
update the skeleton
Update op_webnn.cpp
Update op_webnn
Update op_webnn.cpp
Update op_webnn.cpp
Update op_webnn.hpp
update op_webnn
update op_webnn
Solved the problems of released variables.
Fixed the bugs in op_webnn.cpp
Implement op_webnn
Implement Relu by WebNN API
Update dnn.cpp for better test
Update elementwise_layers.cpp
Implement ReLU6
Update elementwise_layers.cpp
Implement SoftMax using WebNN API
Implement Reshape by WebNN API
Implement PermuteLayer by WebNN API
Implement PoolingLayer using WebNN API
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Implement poolingLayer by WebNN API and add more detailed logs
Update dnn.cpp
Update dnn.cpp
Remove redundant codes and add more logs for poolingLayer
Add more logs in the pooling layer implementation
Fix the indent issue and resolve the compiling issue
Fix the build problems
Fix the build issue
FIx the build issue
Update dnn.cpp
Update dnn.cpp
* Fix the build issue
* Implement BatchNorm Layer by WebNN API
* Update convolution_layer.cpp
This is a temporary file for Conv2d layer implementation
* Integrate some general functions into op_webnn.cpp&hpp
* Update const_layer.cpp
* Update convolution_layer.cpp
Still have some bugs that should be fixed.
* Update conv2d layer and fc layer
still have some problems to be fixed.
* update constLayer, conv layer, fc layer
There are still some bugs to be fixed.
* Fix the build issue
* Update concat_layer.cpp
Still have some bugs to be fixed.
* Update conv2d layer, fully connected layer and const layer
* Update convolution_layer.cpp
* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)
* Delete bib19450.aux
* Add WebNN backend for OpenCV DNN Module
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Add WebNN head files into OpenCV 3rd partiy files
Create webnn.hpp
update cmake
Complete README and add OpenCVDetectWebNN.cmake file
add webnn.cpp
Modify webnn.cpp
Can successfully compile the codes for creating a MLContext
Update webnn.cpp
Update README.md
Update README.md
Update README.md
Update README.md
Update cmake files and
update README.md
Update OpenCVDetectWebNN.cmake and README.md
Update OpenCVDetectWebNN.cmake
Fix OpenCVDetectWebNN.cmake and update README.md
Add source webnn_cpp.cpp and libary libwebnn_proc.so
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
update dnn.cpp
update op_webnn
update op_webnn
Update op_webnn.hpp
update op_webnn.cpp & hpp
Update op_webnn.hpp
Update op_webnn
update the skeleton
Update op_webnn.cpp
Update op_webnn
Update op_webnn.cpp
Update op_webnn.cpp
Update op_webnn.hpp
update op_webnn
update op_webnn
Solved the problems of released variables.
Fixed the bugs in op_webnn.cpp
Implement op_webnn
Implement Relu by WebNN API
Update dnn.cpp for better test
Update elementwise_layers.cpp
Implement ReLU6
Update elementwise_layers.cpp
Implement SoftMax using WebNN API
Implement Reshape by WebNN API
Implement PermuteLayer by WebNN API
Implement PoolingLayer using WebNN API
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Implement poolingLayer by WebNN API and add more detailed logs
Update dnn.cpp
Update dnn.cpp
Remove redundant codes and add more logs for poolingLayer
Add more logs in the pooling layer implementation
Fix the indent issue and resolve the compiling issue
Fix the build problems
Fix the build issue
FIx the build issue
Update dnn.cpp
Update dnn.cpp
* Fix the build issue
* Implement BatchNorm Layer by WebNN API
* Update convolution_layer.cpp
This is a temporary file for Conv2d layer implementation
* Integrate some general functions into op_webnn.cpp&hpp
* Update const_layer.cpp
* Update convolution_layer.cpp
Still have some bugs that should be fixed.
* Update conv2d layer and fc layer
still have some problems to be fixed.
* update constLayer, conv layer, fc layer
There are still some bugs to be fixed.
* Update conv2d layer, fully connected layer and const layer
* Update convolution_layer.cpp
* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)
* Update dnn.cpp
* Fix Error in dnn.cpp
* Resolve duplication in conditions in convolution_layer.cpp
* Fixed the issues in the comments
* Fix building issue
* Update tutorial
* Fixed comments
* Address the comments
* Update CMakeLists.txt
* Offer more accurate perf test on native
* Add better perf tests for both native and web
* Modify per tests for better results
* Use more latest version of Electron
* Support latest WebNN Clamp op
* Add definition of HAVE_WEBNN macro
* Support group convolution
* Implement Scale_layer using WebNN
* Add Softmax option for native classification example
* Fix comments
* Fix comments
* dnn(ocl4dnn): fix LRN layer accuracy problems
- FP16 intermediate computation is not accurate and may provide NaN values
* dnn(test): update tolerance for FP16
fix bug: wrong output dimension when "keep_dims" is false in pooling layer.
* fix bug in max layer
* code align
* delete permute layer and add test case
* add name assert
* check other cases
* remove c++11 features
* style:add "const" remove assert
* style:sanitize file names
dnn : int8 quantized layers support in onnx importer
* added quantized layers support in onnx importer
* added more cases in eltwise node, some more checks
* added tests for quantized nodes
* relax thresholds for failed tests, address review comments
* refactoring based on review comments
* added support for unsupported cases and pre-quantized resnet50 test
* relax thresholds due to int8 resize layer
Add ExpandDims layer of tf_importer.cpp
* Add ExpandDims to tf_importer.
* add -1 expand test case.
* Support different dimensions of input.
* Compatible with 5-dimensional NDHWC data
* Code align
* support 3-dim input.
* 3-dim bug fixed.
* fixing error of code format.
Add support for YOLOv4x-mish
* backport to 3.4 for supporting yolov4x-mish
* add YOLOv4x-mish test
* address review comments
Co-authored-by: Guo Xu <guoxu@1school.com.cn>
Add Normalize subgraph, fix Slice, Mul and Expand
* Add Normalize subgraph, support for starts<0 and axis<0 in Slice, Mul broadcasting in the middle and fix Expand's unsqueeze
* remove todos
* remove range-based for loop
* address review comments
* change >> to > > in template
* fix indexation
* fix expand that does nothing
* support PPSeg model for dnn module
* fixed README for CI
* add test case
* fixed bug
* deal with comments
* rm dnn_model_runner
* update test case
* fixed bug for testcase
* update testcase
Support non-zero hidden state for LSTM
* fully support non-zero hidden state for LSTM
* check dims of hidden state for LSTM
* fix failed test Test_Model.TextRecognition
* add new tests for LSTM w/ non-zero hidden params
Co-authored-by: Julie Bareeva <julia.bareeva@xperience.ai>
* Aligned OpenCV DNN and TF sum op behaviour
Support Mat (shape: [1, m, k, n] ) + Vec (shape: [1, 1, 1, n]) operation
by vec to mat expansion
* Added code corrections: backend, minor refactoring
Added OpenVINO ARM target
* Added IE ARM target
* Added OpenVINO ARM target
* Delete ARM target
* Detect ARM platform
* Changed device name in ArmPlugin
* Change ARM detection
Conv1D and Pool1D for CUDA backend
* CUDA-independent changes
* Add Conv1D and Pool1D for CUDA backend
* CUDA-independent changes
* Fix typo
* fix comment
* Update fix
* make changes more correct for pooling layer
* Minor fixes for review
* Split skip blocks
[GSoC] High Level API and Samples for Scene Text Detection and Recognition
* APIs and samples for scene text detection and recognition
* update APIs and tutorial for Text Detection and Recognition
* API updates:
(1) put decodeType into struct Voc
(2) optimize the post-processing of DB
* sample update:
(1) add transformation into scene_text_spotting.cpp
(2) modify text_detection.cpp with API update
* update tutorial
* simplify text recognition API
update tutorial
* update impl usage in recognize() and detect()
* dnn: refactoring public API of TextRecognitionModel/TextDetectionModel
* update provided models
update opencv.bib
* dnn: adjust text rectangle angle
* remove points ordering operation in model.cpp
* update gts of DB test in test_model.cpp
* dnn: ensure to keep text rectangle angle
- avoid 90/180 degree turns
* dnn(text): use quadrangle result in TextDetectionModel API
* dnn: update Text Detection API
(1) keep points' order consistent with (bl, tl, tr, br) in unclip
(2) update contourScore with boundingRect
Add option for NMS for boxes with different labels
* DetectionModel impl
* Add option for NMS for boxes with different labels
In the detect function in modules/dnn/include/opencv2/dnn/dnn.hpp, whose implementation can be found at modules/dnn/src/model.cpp, the Non Max Suppression (NMS) is applied only for objects of the same label. Thus, a flag
was added with the purpose to allow developers to choose if they want to keep the default implementation or wether they would like NMS to be applied to all the boxes, regardless of label.
The flag is called nmsDifferentLabels, and is given a default value of false, which applies the current default implementation, thus allowing existing projects to update opencv without disruption
Solves issue opencv#18832
* Change return type of set & Add default constr
* Add assertions due to default constructor
Support for Pool1d layer for OpenCV and OpenCL targets
* Initial version of Pool1d support
* Fix variable naming
* Fix 1d pooling for OpenCL
* Change support logic, remove unnecessary variable, split the tests
* Remove other depricated variables
* Fix warning. Check tests
* Change support check logic
* Change support check logic, 2
Fixing dnn Resize layer for variable input size
* Fix onnx loading of resize/upsample layers for different opset
* group all DynamicResize tests
* cleaned up scales checks
* Simplify branching
Fix loading issue for Faster RCNN model from #16783
* Add a reproducer with multi-output Gather
* Fix an issue with ONNX graph simplifier
* fix build
* Move checks to correct class
* Minor changes for better code appearence
Add support for Conv1D on OpenCV backend
* Add support for Conv1D on OpenCV backend
* disable tests on other targets/backends
* Fix formatting
* Restore comment
* Remove unnecessary flag and fix test logic
* Fix perf test
* fix braces
* Fix indentation, assert check and remove unnecessary condition
* Remove unnecessary changes
* Add test cases for variable weights and bias
* dnn(conv): fallback on OpenCV+CPU instead of failures
* coding style