Commit Graph

24400 Commits

Author SHA1 Message Date
Alexander Smorkalov
b22c2505a8 Disable warning C5054 in VS 2022 C++20 2023-07-26 09:23:32 +03:00
Zhangjie Chen
4d695cd2f4
Merge pull request #23805 from starga2er777:5.x
GSoC: Modified PLY reader to support color attribute read/write #23805

* Modified PLY reader to support color attribute read/write
* Fix bugs & Modified OBJ reader for color IO
* Replace with correct test file
* Fix I/O of property [w] in OBJ files

### Pull Request Readiness Checklist

**Merged with https://github.com/opencv/opencv_extra/pull/1075**

[Issue for GSoC 2023](https://github.com/opencv/opencv/issues/23624)
The ply loader in 3D module doesn't support color attribute reading. I modified that to support color attribute reading & writing for the color attribute compression as described in proposal.

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-25 16:05:56 +03:00
Alexander Smorkalov
e5e1a3bfde
Merge pull request #24043 from zixianweei:use-vaddq_f32-on-arm64
fix compilation error on Windows ARM, use vaddq_f32 instead of +=
2023-07-25 11:41:09 +03:00
Alexander Smorkalov
c9a4775d49
Merge pull request #24047 from ivashmak:remove_unused_4.x
Remove unused features in USAC in 4.x
2023-07-23 21:12:28 +03:00
Alexander Smorkalov
18f280b869
Merge pull request #23990 from asmorkalov:as/5.x_calib_api_cleanup
Unify Pinhole and Fisheye camera models
2023-07-23 09:55:49 +03:00
Alexander Smorkalov
12acf5603a
Merge pull request #24001 from legrosbuffle:legrosbuffle-cvround-intrinsic
Use intrinsics for `cvRound` on x86_64 `__GNUC__` (clang/gcc linux) too.
2023-07-23 09:53:18 +03:00
Ivashechkin, Maxim (PG/R - Comp Sci & Elec Eng)
0bcd66d553 remove unused 2023-07-22 10:44:37 +01:00
Alexander Smorkalov
d69c1d8652
Merge pull request #24032 from vrabaud:ubsan
Fix undefined behavior with wrong function pointers called.
2023-07-21 17:16:12 +03:00
Alexander Smorkalov
d4af868528
Merge pull request #24040 from asmorkalov:as/cuda_dnn_eps_fix
Increase eps for Test_Torch_nets.FastNeuralStyle_accuracy to prevent sporadic test failres with CUDA.
2023-07-21 16:46:34 +03:00
Vadim Levin
2fc7d21971
Merge pull request #24029 from VadimLevin:dev/vlevin/python-add-cuda-stream-to-simple-types
feat: add cuda_Stream and cuda_GpuMat to simple types mapping #24029

This patch fixes usage of `cuda::Stream` in function arguments.

Affected modules: `cudacodec`: 
[`using namespace cuda`](9dfe233020/modules/cudacodec/include/opencv2/cudacodec.hpp (L62))  in public `cudacodec.hpp` header can be removed after merge of the patch.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-21 14:57:32 +03:00
zixgo
ec7689421d fix compilation error on Windows ARM, use vaddq_f32 instead of += 2023-07-21 19:54:43 +08:00
Alexander Smorkalov
d96ff496b4 Increase eps for Test_Torch_nets.FastNeuralStyle_accuracy to prevent sporadic test failres with CUDA. 2023-07-21 13:51:03 +03:00
Vadim Levin
e3cb5f80e7
Merge pull request #24028 from VadimLevin:dev/vlevin/fix-flann-python-bindings
Fix FLANN python bindings #24028

As a side-effect this patch improves reporting errors by FLANN `get_param`.

resolves #21642

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-21 12:44:56 +03:00
Alexander Smorkalov
09d2f4ea46
Merge pull request #23931 from asmorkalov:as/drawing_overflow
Fixed possible out-of-bound access in circles drawing
2023-07-21 12:28:14 +03:00
Anatoliy Talamanov
5261961a6e
Merge pull request #24024 from TolyaTalamanov:at/add-onnx-openvino-execution-provider
G-API: Support OpenVINO Execution Provider for ONNXRT Backend #24024

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-07-21 12:18:06 +03:00
Clement Courbet
3cce299a78 Use intrinsics for cvRound on x86 and x86_64 __GNUC__ (clang/gcc linux) too.
We've measured a 7x improvement in speed for `cvRound` using the intrinsic.
2023-07-21 10:57:54 +03:00
Dmitry Kurtaev
e41ba90f17
Merge pull request #24004 from dkurt:tflite_new_layers
[TFLite] Pack layer and other fixes for SSD from Keras #24004

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23992

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1076

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-21 09:13:37 +03:00
Vincent Rabaud
423ab8ddb8 Use void* 2023-07-20 15:53:57 +02:00
Vincent Rabaud
20784d3da2 Fix undefined behavior with wrong function pointers called.
Details here: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=58006
runtime error: call to function (unknown) through pointer to incorrect function type 'void (*)(const unsigned char **, const int *, unsigned char **, const int *, int, int)'
2023-07-20 15:32:05 +02:00
Vadim Levin
1794cdc03c
Merge pull request #24023 from VadimLevin:dev/vlevin/python-typing-magic-constants
Python typing magic constants #24023

This patch adds typing stubs generation for `__all__` and `__version__` constants.

Introduced `__all__` is intentionally empty for all generated modules stubs. 

Type hints won't work for star imports

resolves #23950

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-20 09:18:29 +03:00
Alexander Smorkalov
c792233d9c
Merge pull request #24026 from VadimLevin:dev/vlevin/python-numpy-writeable-flag-check
fix: preserve NumPY writeable flag in output arguments
2023-07-19 19:17:30 +03:00
Vadim Levin
4c568e6ed3 fix: preserve NumPY writeable flag in output arguments 2023-07-19 17:22:10 +03:00
Vadim Levin
9519e67ad2
Merge pull request #24022 from VadimLevin:dev/vlevin/python-typing-cuda
Fix python typing stubs generation for CUDA modules #24022

resolves #23946
resolves #23945
resolves opencv/opencv-python#871

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-19 16:51:41 +03:00
Alexander Smorkalov
8595066afc Unify Pinhole and Fisheye camera calibration flags. 2023-07-19 14:58:08 +03:00
Alexander Smorkalov
b0cbd6ef77
Merge pull request #23999 from asmorkalov:as/opencv_logging
Use OpenCV logging instead of std::cerr
2023-07-19 14:46:27 +03:00
Alexander Smorkalov
23f27d8dbe Use OpenCV logging instead of std::cerr. 2023-07-19 10:49:54 +03:00
Alexander Smorkalov
81f07f001e
Merge pull request #24008 from iarspider:patch-1
test_houghlines: Fix C++20 compatibility
2023-07-18 15:37:43 +03:00
iarspider
55906457e6
test_houghlines: Fix C++20 compatibility
C++20 made it invalid to use simple-template-ids for constructors and destructors: https://eel.is/c++draft/diff.cpp17.class#2
GCC 11 and later throw an error on this, with the unhelpful message `expected unqualified-id before ')' token`. This PR fixes the problem.
2023-07-18 09:18:17 +02:00
cudawarped
e00c904585 cuda: add SkipTestException handling 2023-07-17 18:03:40 +03:00
Zihao Mu
1920993525
Merge pull request #23952 from zihaomu:fix_depth_conv_5x5
DNN: optimize the speed of general Depth-wise #23952

Try to solve the issue: https://github.com/opencv/opencv/issues/23941

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-07-14 17:34:39 +03:00
Alexander Smorkalov
1a3523d2d8 Drop Python2 support. 2023-07-14 15:06:53 +03:00
Alexander Smorkalov
1f7025f028
Merge pull request #23920 from loongson-zn:4.x
Fix LoongArch Macro Definition
2023-07-14 15:00:41 +03:00
firebladed
7819ec784b
Merge pull request #18498 from firebladed:patch-1
Add V4L2_PIX_FMT_Y16_BE pixel format #18498

Address #18495
relates to #23944

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [ ] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
- [ ] Test using Melexis MLX90640
2023-07-14 11:31:55 +03:00
Alexander Smorkalov
52d9685cb9 Fixed possible out-of-bound access in circles drawing. 2023-07-14 09:21:33 +03:00
Alexander Smorkalov
3aeaa34023
Merge pull request #23914 from AleksandrPanov:update_aruco_byteList_docs
update ArUco Dictionary documentation
2023-07-13 15:48:57 +03:00
Alex
c12e1ecb86 update aruco bytesList docs 2023-07-13 13:50:07 +03:00
Alexander Smorkalov
bd2695f01b
Merge pull request #23966 from hanliutong:popcount
Add missing ”v_popcount“ for RVV and enable tests.
2023-07-13 12:22:46 +03:00
Alexander Smorkalov
cea26341a5 Merge branch 4.x 2023-07-13 09:28:36 +03:00
Vincent Rabaud
fdfb875208
Merge pull request #23922 from vrabaud:imgwarp
Fix imgwarp at borders when transparent. #23922

I believe this is a proper fix to #23562

The PR #23754 overwrites data while that should not be the case with transparent data. The original test is failing because points at the border do not get computed because they do not have 4 neighbors to be computed. Still ,we can approximate their computation with whatever neighbors that are available.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-12 15:20:01 +03:00
Alexander Smorkalov
85f0074f23
Merge pull request #23973 from mshabunin:riscv-unaligned-access
RISC-V: fix unaligned loads and stores
2023-07-12 14:51:56 +03:00
Alexander Smorkalov
0f17851562
Merge pull request #23972 from Avasam:partially-unknown-mat
Prefer using `TYPE_CHECKING` condition in `cv2.typing` module
2023-07-12 14:51:08 +03:00
Alexander Smorkalov
53af876999
Merge pull request #23969 from asmorkalov:as/python2_test_fix
Fixed tests execution with Python 2.7
2023-07-11 20:53:01 +03:00
Maksim Shabunin
3f0707234f risc-v: fix unaligned loads and stores 2023-07-11 19:23:12 +03:00
Avasam
cd9f85dbda Update usages of ConditionalAliasTypeNode following #23838 to use TYPE_CHECKING 2023-07-11 12:22:27 -04:00
Alexander Smorkalov
99058ee30b
Merge pull request #23956 from VadimLevin:dev/vlevin/recursive-re-export-submodules
fix: recursively re-export nested submodules in typing stubs
2023-07-11 18:45:27 +03:00
Alexander Smorkalov
48c52c8bbb Fixed tests execution with Python 2.7 2023-07-11 18:24:08 +03:00
Alexander Smorkalov
40727c8369
Merge pull request #23970 from mshabunin:fix-v4l-test
videoio: fix v4l2 test on older platforms (centos)
2023-07-11 18:16:28 +03:00
Maksim Shabunin
e3c1405254 videoio: fix v4l2 test on older platforms (centos) 2023-07-11 17:05:32 +03:00
Yusuke Kameda
87f8cdd699
doxygen: Fix ImwriteFlags documentation misalignment 2023-07-11 19:08:58 +09:00
Liutong HAN
a00818047f Add missing ”v_popcount“ for RVV and enable tests. 2023-07-11 16:10:27 +08:00
Alexander Smorkalov
6af4a02941
Merge pull request #23958 from VadimLevin:dev/vlevin/friendly-wrong-npy-type-message
feat: update NumPy type to Mat type fail message
2023-07-11 10:42:41 +03:00
Alexander Smorkalov
6ff5245cf2
Merge pull request #23927 from Avasam:partially-unknown-mat
Fix partially unknown Mat
2023-07-11 10:32:48 +03:00
Vincent Rabaud
2af6775c14
Merge pull request #23943 from vrabaud:avif_tsan
Fix checkSignature not thread safe for AVIF. #23943

A common decoder cannot be shared with checkSignature which is used like a static function (on a static ist of decoders).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-11 10:25:53 +03:00
Alexander Smorkalov
bb61cc0dba
Merge pull request #23954 from VadimLevin:dev/vlevin/matrix-type-constants-stubs
feat: add matrix type stubs generation
2023-07-10 18:48:01 +03:00
Vadim Levin
953de60ff0 feat: update NumPy type to Mat type fail message
Output string representation of NumPy array type if it is not
convertible to OpenCV Mat type
2023-07-10 18:09:15 +03:00
Vadim Levin
986e379f28 feat: add matrix type stubs generation
Adds missing typing stubs:

- Matrix depths: `CV_8U`, `CV_8S` and etc.
- Matrix type constants: `CV_8UC1`, `CV_32FC3` and etc.
- Matrix type factory functions: `CV_*(channels) -> int` and `CV_MAKETYPE`
2023-07-10 17:35:27 +03:00
Vadim Levin
a6df336477 fix: recursively re-export nested submodules 2023-07-10 14:39:59 +03:00
Vadim Levin
8097bdc2f4 fix: typing stubs overload presence check 2023-07-10 14:30:44 +03:00
Alexander Smorkalov
fdc0c12b7f
Merge pull request #23944 from mshabunin:test-v4l2
videoio: test for V4L using virtual device
2023-07-10 12:54:43 +03:00
Alexander Smorkalov
05becd56e5
Merge pull request #23938 from mshabunin/fix-warnings-gcc
Fix compiler warnings for GCC 11-12 and Clang 13
2023-07-10 12:41:37 +03:00
Alexander Smorkalov
d2951d6d4c
Merge pull request #23928 from Avasam:Add-missing-properties-to-error-class
Add missing properties to error class
2023-07-10 12:40:06 +03:00
Maksim Shabunin
09944a83d9 build: w/a compiler warnings for GCC 11-12 and Clang 13, reduce build output 2023-07-10 11:27:59 +03:00
Maksim Shabunin
e43bc88fc3 videoio: test for V4L using virtual device 2023-07-07 17:33:33 +03:00
Maksim Shabunin
8931f08362 videoio: fix CAP_IMAGES with non-numbered file 2023-07-06 22:26:53 +03:00
Alexander Smorkalov
f987bf2961
Merge pull request #23814 from Avasam:fix-type-confindece
Fix typo `confindece`
2023-07-05 17:51:32 +03:00
Alexander Smorkalov
5af40a0269 Merge branch 4.x 2023-07-05 15:51:10 +03:00
Zhang Na
10294a84fa Fix LoongArch Macro Definition 2023-07-05 17:42:39 +08:00
Avasam
32251c9b04 Add missing properties to error class 2023-07-04 17:57:30 -04:00
Avasam
9f87475129 Fix partially unknown Mat 2023-07-04 16:44:32 -04:00
Berke
71796edf95
removed trailing semicolon after function
It gives error when building projects with -Wpedantic -Werror

error: extra ‘;’ [-Werror=pedantic]

Issue ##23916
2023-07-04 21:18:30 +03:00
Alexander Smorkalov
8839bd572e
Merge pull request #23815 from LaurentBerger:CAP_IMAGES
Add single image support to VideoCapture
2023-07-04 16:31:29 +03:00
Alexander Smorkalov
c9d8b541fc
Merge pull request #23896 from mshabunin:test-cap-images
videoio: tests for CAP_IMAGES
2023-07-04 16:30:53 +03:00
Alexander Alekhin
67faf1610e Merge pull request #23885 from hanliutong:UniversalIntrinsicRewriter 2023-07-03 14:56:30 +00:00
Alexander Smorkalov
377be68d92
Merge pull request #23892 from vrabaud:compile_fix
Fix compilation when HAVE_QUIRC is not set.
2023-07-03 13:16:49 +03:00
Wang Kai
0661aff4a5
Merge pull request #23900 from kai-waang:fixing-typo
Fixing typos in usac #23900

Just read and correct some typos in `usac`
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-07-03 12:08:12 +03:00
Vincent Rabaud
e9414169a3 Fix compilation when HAVE_QUIRC is not set.
One variable is unknown while the other one is unused.
Fixed build warnings.
2023-07-03 11:35:05 +03:00
Maksim Shabunin
1d9c0d3e12 videoio: tests for CAP_IMAGES 2023-07-03 10:33:16 +03:00
Wang Kai
d25d44156b removing unreachable codes in gbackend 2023-07-02 15:33:52 +08:00
Wang Kai
bca5868817 removing duplicated statement 2023-07-01 13:29:02 +08:00
Alexander Smorkalov
131dab774c Merge branch 'release_4.8.0' into 4.x 2023-06-28 15:22:43 +03:00
Alexander Smorkalov
f9a59f2592 Release OpenCV 4.8.0 2023-06-28 14:53:33 +03:00
Anatoliy Talamanov
b8b8c7c9e5
Merge pull request #23884 from TolyaTalamanov:at/fix-async-infer-ov-backend
G-API: Fix async inference for OpenVINO backend #23884

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-28 14:52:15 +03:00
Liutong HAN
d17507052e Rewrite SIMD code by using new Universal Intrinsic API. 2023-06-28 17:12:37 +08:00
Alexander Smorkalov
bf06bc92aa Merge branch '3.4' into merge-3.4 2023-06-23 20:12:58 +03:00
Yuantao Feng
aff420329c
Merge pull request #23853 from fengyuentau:disable_fp16_warning
dnn: disable warning when loading a fp16 model #23853

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-23 19:52:04 +03:00
Alexander Smorkalov
21d79abb1f
Merge pull request #23859 from TolyaTalamanov:at/ov-backend-core-wa
G-API: Apply ov::Core lifetime WA for OpenVINO Backend
2023-06-23 19:49:06 +03:00
Alexander Smorkalov
d9a5603fa3
Merge pull request #23860 from fengyuentau:fix_overflow_sigmoid_v3.4
dnn: fix overflow in sigmoid layer for 3.4
2023-06-23 19:47:42 +03:00
Alexander Smorkalov
ee97dd5211
Merge pull request #23806 from asmorkalov:as/usac_drop_mat_ptr
Get rid of unsafe raw pointers to Mat object in USAC
2023-06-23 16:23:03 +03:00
fengyuentau
29388f80a5 fix overflow 2023-06-23 21:22:21 +08:00
Alexander Panov
e7501b69ea
Merge pull request #23647 from AleksandrPanov:fix_charuco_board_detect
Add charuco board check #23647

Added charuco board checking to avoid detection of incorrect board.
Fixes #23517

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-23 16:16:22 +03:00
TolyaTalamanov
c0fda696f3 Apply ov::Core WA 2023-06-23 12:16:21 +00:00
Paul Kim (김형준)
3b264d5877
Add pthread.h Inclusion if HAVE_PTHREADS_PF is defined
Single-case tested with success on Windows 11 with MinGW-w64 Standalone GCC v13.1.0 while building OpenCV 4.7.0
2023-06-23 17:53:03 +09:00
Alexander Smorkalov
0866a135c6 Git rid of unsafe raw pointers to Mat object. 2023-06-23 09:20:24 +03:00
Alexander Smorkalov
2849a774e3
Merge pull request #23846 from asmorkalov:as/ffmpeg_update_4.x
FFmpeg/4.x: update FFmpeg wrapper 2023.6
2023-06-22 21:00:06 +03:00
Alexander Panov
affc69bf1f
Merge pull request #23848 from AleksandrPanov:fix_detectDiamonds_api
Fix detect diamonds api #23848

`detectDiamonds` cannot be called from python, reproducer:

```
import numpy as np
import cv2 as cv

detector = cv.aruco.CharucoDetector(
    cv.aruco.CharucoBoard(
        (3, 3), 200.0, 100.0,
        cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
    )
)
image = np.zeros((640, 480, 1), dtype=np.uint8)
res = detector.detectDiamonds(image)
print(res)
```

The error in `detectDiamonds` API fixed by replacing `InputOutputArrayOfArrays markerIds` with `InputOutputArray markerIds`.


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-22 17:30:44 +03:00
Dmitry Kurtaev
22b747eae2
Merge pull request #23702 from dkurt:py_rotated_rect
Python binding for RotatedRect #23702

### Pull Request Readiness Checklist

related: https://github.com/opencv/opencv/issues/23546#issuecomment-1562894602

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-22 15:09:53 +03:00
Alexander Smorkalov
426b088754 FFmpeg/4.x: update FFmpeg wrapper 2023.6 2023-06-22 13:58:58 +03:00
Anatoliy Talamanov
60848519b5
Merge pull request #23843 from TolyaTalamanov:at/fix-missing-opaque-kind-for-kernel
G-API: Fix incorrect OpaqueKind for Kernel outputs #23843

### Pull Request Readiness Checklist

#### Overview
The PR is going to fix several problems:
1. Major: `GKernel` doesn't hold `kind` for its outputs. Since `GModelBuilder` traverse graph from outputs to inputs once it reaches any output of the operation it will use its `kind` to create  `Data` meta for all operation outputs. Since it essential for `python` to know `GTypeInfo` (which is `shape` and `kind`) it will be confused.

Consider this operation:
```
 @cv.gapi.op('custom.square_mean', in_types=[cv.GArray.Int], out_types=[cv.GOpaque.Float, cv.GArray.Int])
    class GSquareMean:
        @staticmethod
        def outMeta(desc):
            return cv.empty_gopaque_desc(), cv.empty_array_desc()
```
Even though `GOpaque` is `Float`, corresponding metadata might have `Int` kind because it might be taken from `cv.GArray.Int`
so it will be a problem if one of the outputs of these operation is graph output because python will cast it to the wrong type based on `Data` meta.

2. Minor: Some of the OpenVINO `IR`'s doesn't any layout information for input. It's usually true only for `IRv10` but since `OpenVINO 2.0` need this information to correctly configure resize we need to put default layout if there no such assigned in `ov::Model`. 

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-22 12:46:25 +03:00
Alexander Smorkalov
61d48dd0f8
Merge pull request #23540 from cudawarped:add_CAP_PROP_CODEC_FOURCC
`VideoCapture`: change `CAP_PROP_FOURCC` to fix #22876
2023-06-22 12:21:59 +03:00
Alexander Alekhin
1656e7573e gapi: fix static build with openvino 2023-06-21 14:17:44 +00:00
Alexander Smorkalov
fc810434de
Merge pull request #23801 from VadimLevin:dev/vlevin/python-stubs-api-refinement
feat: manual refinement for Python API definition
2023-06-21 10:44:36 +03:00
Alexander Smorkalov
65b957a5b3
Merge pull request #23832 from asmorkalov:as/reshape_docs
Document parameters of multi-dimentional reshape
2023-06-21 09:04:17 +03:00
Alexander Smorkalov
9eaa7bd566 Document parameters of multi-dimentional reshape. 2023-06-20 21:54:49 +03:00
Vadim Levin
f20edba925 fix: conditionally define generic NumPy NDArray alias 2023-06-20 20:05:58 +03:00
Alexander Smorkalov
fe4f5b539e
Merge pull request #23835 from VadimLevin:dev/vlevin/fix-ast-nodes-required-usage-imports
fix: AST nodes required usage imports
2023-06-20 18:34:07 +03:00
Vadim Levin
06b40aef91 fix: AST nodes required usage imports 2023-06-20 16:31:55 +03:00
Alexander Smorkalov
51702ffd92 pre: OpenCV 4.8.0 (version++) 2023-06-20 15:52:57 +03:00
Alexander Smorkalov
805946baaf pre: OpenCV 3.4.20 (version++) 2023-06-20 14:10:08 +03:00
Alexander Smorkalov
726ba0210e
Merge pull request #23825 from ulvido:4.x
if browser supports wasm but only asm.js path provided use asm.js as fallback
2023-06-20 13:35:18 +03:00
Anatoliy Talamanov
71790e12ad
Merge pull request #23799 from TolyaTalamanov:at/ov20-backend-implement-missing-kernels
G-API: Implement InferROI, InferList, InferList2 for OpenVINO backend #23799

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-20 13:29:23 +03:00
Anatoliy Talamanov
0cf45b89ec
Merge pull request #23796 from TolyaTalamanov:at/align-ie-backend-with-latest-openvino
G-API: Align IE Backend with the latest OpenVINO version #23796

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-20 12:33:08 +03:00
Alexander Smorkalov
004801f1c5 Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-06-20 09:56:57 +03:00
lamm45
ddcbd2cc26
Merge pull request #22798 from lamm45:distransform-large
Fix distransform to work with large images #22798

This attempts to fix the following bug which was caused by storing squares of large integers into 32-bit floating point variables:
https://github.com/opencv/opencv/issues/22732


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-19 15:11:01 +03:00
Ulvi YELEN
d6d15c136a
if browser supports wasm but only asm.js path provided use asm.js as fallback 2023-06-17 09:38:57 +03:00
Avasam
277b0231f2 fix typo confindece 2023-06-16 20:26:26 -04:00
Alexander Smorkalov
a4a739b99e Force mat_wrapper import to satisfy dependencies for MatLike alias. 2023-06-16 21:51:17 +03:00
Alexander Smorkalov
c0d4e16833
Merge pull request #23819 from asmorkalov:as/objdetect_no_dnn
Fixed barcode to be built without DNN
2023-06-16 20:03:45 +03:00
Vadim Levin
94703fc5b0
Merge pull request #23816 from VadimLevin:dev/vlevin/export-all-caps-enum-constants
Export enums ALL_CAPS version to typing stub files #23816

- Export ALL_CAPS versions alongside from normal names for enum constants, since both versions are available in runtime
- Change enum names entries comments to documentary strings

Before patch
```python
RMat_Access_R: int
RMat_Access_W: int
RMat_Access = int  # One of [R, W]
```
After patch
```python
RMat_Access_R: int
RMAT_ACCESS_R: int
RMat_Access_W: int
RMAT_ACCESS_W: int
RMat_Access = int
"""One of [RMat_Access_R, RMAT_ACCESS_R, RMat_Access_W, RMAT_ACCESS_W]"""
```

Resolves: #23776

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 20:03:19 +03:00
Alexander Smorkalov
496474392e
Merge pull request #23809 from VadimLevin:dev/vlevin/re-export-stubs-submodules
feat: re-export symbols to cv2 level
2023-06-16 20:01:24 +03:00
Dmitry Kurtaev
433c364456
Merge pull request #23724 from dkurt:java_without_ant
Build Java without ANT #23724

### Pull Request Readiness Checklist

Enables a path of building Java bindings without ANT

* Able to build OpenCV JAR and Docs without ANT
  ```
  --   Java:
  --     ant:                         NO
  --     JNI:                         /usr/lib/jvm/default-java/include /usr/lib/jvm/default-java/include/linux /usr/lib/jvm/default-java/include
  --     Java wrappers:               YES
  --     Java tests:                  NO
  ```
* Possible to build OpenCV JAR without ANT but tests still require ANT

**Merge with**: https://github.com/opencv/opencv_contrib/pull/3502

Notes:
- Use `OPENCV_JAVA_IGNORE_ANT=1` to force "Java" flow for building Java bindings
- Java tests still require Apache ANT
- JAR doesn't include `.java` source code files.


See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 19:58:20 +03:00
Dmitry Kurtaev
ec95efca10
Merge pull request #23754 from dkurt:remap_linear_transparent
Keep inliers for linear remap with BORDER_TRANSPARENT #23754

Address https://github.com/opencv/opencv/issues/23562

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23562

I do think that this is a bug because with `INTER_CUBIC + BORDER_TRANSPARENT` the last column and row are preserved. So same should be done for `INTER_LINEAR`

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 18:30:21 +03:00
Alexander Smorkalov
003d048b0d
Merge pull request #23813 from VadimLevin:dev/vlevin/runtime-typing-module
fix: typing module enums references
2023-06-16 18:20:44 +03:00
Alexander Smorkalov
b6d1402361 Fixed barcode to be built without DNN 2023-06-16 15:12:49 +03:00
unknown
1eaa074a49 remove line 2023-06-16 11:28:11 +02:00
cudawarped
024c836462 cv::VideoCapture: change CAP_PROP_FOURCC to prefer codec_id over codec_tag 2023-06-16 11:56:44 +03:00
Maksym Ivashechkin
44881592c3
Merge pull request #23078 from ivashmak:update_vsac
Update USAC #23078

### Pull Request Readiness Checklist

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 10:59:13 +03:00
Alexander Smorkalov
3c0b71bcec
Merge pull request #23795 from dkurt:tf_half_pixel_for_nn
Consider half pixel mode in ONNX resize
2023-06-16 10:21:20 +03:00
Alexander Smorkalov
a9d547dfee
Merge pull request #23807 from mshabunin:barcode-test
objdetect: updated barcode test
2023-06-16 10:10:27 +03:00
Vadim Levin
69ebecc54f feat: add OpenCV error class to cv2/__init__.pyi 2023-06-15 23:10:10 +03:00
unknown
8762c37c22 solve issue 23808 2023-06-15 21:29:18 +02:00
Vadim Levin
a3b6a5b606 fix: typing module enums references
Enum names exist only during type checking.
During runtime they should be denoted as named integral types
2023-06-15 21:29:40 +03:00
dizcza
e625b32841 [opencv 3.x] back-ported tbb support ubuntu 22.04 2023-06-15 19:30:40 +03:00
Dmitry Kurtaev
924c01dbec
Replace CV_Assert_N 2023-06-15 17:30:33 +03:00
Alexander Smorkalov
0d7c039ea1
Merge pull request #23797 from asmorkalov:as/barcode_js_bindings
Barcode js bindings
2023-06-15 17:29:20 +03:00
Alexander Smorkalov
291689a178
Merge pull request #23800 from kai-waang:4.x
removing unreachable code and fixing a typo
2023-06-15 17:28:33 +03:00
Vadim Levin
1acbeb217b feat: re-export symbols to cv2 level
- Re-export native submodules of cv2 package level.
- Re-export  manually registered  symbols like cv2.mat_wrapper.Mat
2023-06-15 16:32:48 +03:00
Maksim Shabunin
2b3424b536 objdetect: updated barcode test 2023-06-15 15:32:19 +03:00
Alexander Smorkalov
538b13aeec JS bindings for bar code detector. 2023-06-15 15:01:01 +03:00
Alexander Smorkalov
0dde3b65d5
Merge pull request #23798 from VadimLevin:dev/vlevin/runtime-typing-module
feat: provide cv2.typing aliases at runtime
2023-06-15 14:41:13 +03:00
Maksim Shabunin
463cd09811
Merge pull request #23666 from mshabunin:barcode-move
Moved barcode from opencv_contrib #23666

Merge with https://github.com/opencv/opencv_contrib/pull/3497

##### TODO
- [x] Documentation (bib)
- [x] Tutorial (references)
- [x] Sample app (refactored)
- [x] Java (test passes)
- [x] Python (test passes)
- [x] Build without DNN
2023-06-14 22:21:38 +03:00
Vadim Levin
5859a531e5 feat: manual refinement for Python API definition
Mark `resize` and `calcHist` arguments as optional regardless of
their C++ API optionality
2023-06-14 21:24:05 +03:00
Vadim Levin
8e8638431d feat: provide cv2.typing aliases at runtime 2023-06-14 20:09:32 +03:00
Wang Kai
fc2d933224 removing unreachable code and fixing a typo 2023-06-15 01:09:02 +08:00
Alexander Smorkalov
52f46589a0
Merge pull request #23790 from asmorkalov:as/qrcode_aruco_js
JS bindings for Aruco-based QR code detector
2023-06-14 17:05:09 +03:00
Dmitry Kurtaev
6909fffde1 Consider half pixel mode in ONNX resize 2023-06-14 14:21:28 +03:00
Damiano Falcioni
19f4f2eb92
Merge pull request #23785 from damianofalcioni:4.x
added Aruco MIP dictionaries #23785

added Aruco MIP dictionaries: DICT_ARUCO_MIP_16h3, DICT_ARUCO_MIP_25h7, DICT_ARUCO_MIP_36h12 from [Aruco.js](https://github.com/damianofalcioni/js-aruco2), converted in opencv format using https://github.com/damianofalcioni/js-aruco2/blob/master/src/dictionaries/utils/dic2opencv.js

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-14 13:29:30 +03:00
Anatoliy Talamanov
b854d4ecd8
Merge pull request #23786 from TolyaTalamanov:at/expose-preprocessing-to-ie-backend
G-API: Expose explicit preprocessing for IE Backend #23786

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-14 09:29:49 +03:00
Alexander Smorkalov
b522148bd9
Merge pull request #23788 from dkurt:py_scalar_assign
Change Scalar assignment in Python from single value
2023-06-13 18:12:00 +03:00
Anatoliy Talamanov
a371bdac9d
Merge pull request #23766 from TolyaTalamanov:at/segmentation-demo-desync
G-API: Refine Semantic Segmentation Demo #23766

### Overview
* Supported demo working with camera id (e.g `--input=0`)
* Supported 3d output segmentation models (e.g `deeplabv3`)
* Supported `desync` execution
* Supported higher camera resolution
* Changed the color map to pascal voc (https://cloud.githubusercontent.com/assets/4503207/17803328/1006ca80-65f6-11e6-9ff6-36b7ef5b9ac6.png)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-13 18:06:19 +03:00
Alexander Smorkalov
3af6001a75 JS bindings for Aruco-based QR code detector. 2023-06-13 17:20:52 +03:00
Alexander Smorkalov
843daca26e JS bingings fix for QR code detector. 2023-06-13 15:36:29 +03:00
Dmitry Kurtaev
f9d7f47e28 Change Scalar assignment in Python from single value 2023-06-13 10:45:03 +03:00
Alexander Smorkalov
e60a7c0d49
Merge pull request #23775 from kai-waang:fixing-typo
fixing typo of a variable name in dnn::runFastConv
2023-06-12 17:50:12 +03:00
zihaomu
37459f89c9 remove unsupported unsupported unicode 2023-06-11 23:02:34 +08:00
Wang Kai
4622f1e89b fixing typo of a variable name in dnn::runFastConv 2023-06-11 01:54:03 +08:00
Alexander Smorkalov
6ca697bc12
Merge pull request #23725 from asmorkalov:as/aruco_js_refresh
Refreshed JavaScript bindings for Aruco related algorithms
2023-06-10 09:21:24 +03:00
Sean McBride
57da72d444 Fixed invalid cast and unaligned memory access
Although acceptible to Intel CPUs, it's still undefined behaviour according to the C++ standard.

It can be replaced with memcpy, which makes the code simpler, and it generates the same assembly code with gcc and clang with -O2 (verified with godbolt).

Also expanded the test to include other little endian CPUs by testing for __LITTLE_ENDIAN__.
2023-06-09 18:56:49 -04:00
Alexander Smorkalov
fe14e7ab24
Merge pull request #23758 from AleksandrPanov:add_GenericGraphicalCode_interface
Add graphical code detector interface
2023-06-09 15:46:32 +03:00
Alexander Smorkalov
61488885b5 Refreshed JavaScript bindings for Aruco related algorithms. 2023-06-09 15:43:43 +03:00
Vincent Rabaud
472aad46a6
Merge pull request #23596 from vrabaud:libavif
Add AVIF support through libavif. #23596

This is to fix https://github.com/opencv/opencv/issues/19271
Extra: https://github.com/opencv/opencv_extra/pull/1069

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-09 15:39:10 +03:00
Alexander Smorkalov
0c8e6e0e68
Merge pull request #23740 from Peekabooc:4.x
fixing typo in stitching parameter names
2023-06-09 13:40:02 +03:00
Pierre Chatelier
60b806f9b8
Merge pull request #22947 from chacha21:hasNonZero
Added cv::hasNonZero() #22947 

`cv::hasNonZero()` is semantically equivalent to (`cv::countNonZero()>0`) but stops parsing the image when a non-zero value is found, for a performance gain

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

This pull request might be refused, but I submit it to know if further work is needed or if I just stop working on it.
The idea is only a performance gain vs `countNonZero()>0` at the cost of more code.

Reasons why it might be refused :

- this is just more code
- the execution time is "unfair"/"unpredictable" since it depends on the position of the first non-zero value
- the user must be aware that default search is from first row/col to last row/col and has no way to customize that, even if his use case lets him know where a non zero could be found
- the PR in its current state is using, for the ocl implementation, a mere `countNonZero()>0` ; there is not much sense in trying to break early the ocl kernel call when non-zero is encountered. So the ocl implementation does not bring any improvement.
- there is no IPP function that can help (`countNonZero()` is based in `ippCountInRange`)
- the PR in its current state might be slower than a call to `countNonZero()>0` in some cases (see "challenges" below)

Reasons why it might be accepted :

- the performance gain is huge on average, if we consider that "on average" means "non zero in the middle of the image"
- the "missing" IPP implementation is replaced by an "Open-CV universal intrinsics" implementation
- the PR in its current state is almost always faster than a call to `countNonZero()>0`, is only slightly slower in the worst cases, and not even for all matrices

**Challenges**
The worst case is either an all-zero matrix, or a non-zero at the very last position.  In such a case, the `hasNonZero()` implementation will parse the whole matrix like `countNonZero()` would do. But we expect the performance to be the same in this case. And `ippCountInRange` is hard to beat !
There is also the case of very small matrices (<=32x32...) in 8b, where the SIMD can be hard to feed.

For all cases but the worse, my custom `hasNonZero()` performs better than `ippCountInRange()`
For the worst case, my custom `hasNonZero()` performs better than `ippCountInRange()` *except for large matrices of type CV_32S or CV_64F* (but surprisingly, not CV_32F).
The difference is small, but it exists (and I don't understand why).
For very small CV_8U matrices `ippCountInRange()` seems unbeatable.

Here is the code that I use to check timings

```

  //test cv::hasNonZero() vs (cv::countNonZero()>0) for different matrices sizes, types, strides...
  {
    cv::setRNGSeed(1234);
    const std::vector<cv::Size> sizes = {{32, 32}, {64, 64}, {128, 128}, {320, 240}, {512, 512}, {640, 480}, {1024, 768}, {2048, 2048}, {1031, 1000}};
    const std::vector<int> types = {CV_8U, CV_16U, CV_32S, CV_32F, CV_64F};
    const size_t iterations = 1000;
    for(const cv::Size& size : sizes)
    {
      for(const int type : types)
      {
        for(int c = 0 ; c<2 ; ++c)
        {
          const bool continuous = !c;
          for(int i = 0 ; i<4 ; ++i)
          {
            cv::Mat m = continuous ? cv::Mat::zeros(size, type) : cv::Mat(cv::Mat::zeros(cv::Size(2*size.width, size.height), type), cv::Rect(cv::Point(0, 0), size));
            const bool nz = (i <= 2);
            const unsigned int nzOffsetRange = 10;
            const unsigned int nzOffset = cv::randu<unsigned int>()%nzOffsetRange;
            const cv::Point pos = 
              (i == 0) ? cv::Point(nzOffset, 0) :
              (i == 1) ? cv::Point(size.width/2-nzOffsetRange/2+nzOffset, size.height/2) :
              (i == 2) ? cv::Point(size.width-1-nzOffset, size.height-1) :
              cv::Point(0, 0);
            std::cout << "============================================================" << std::endl;
            std::cout << "size:" << size << "  type:" << type << "  continuous = " << (continuous ? "true" : "false") << "  iterations:" << iterations << "  nz=" << (nz ? "true" : "false");
            std::cout << "  pos=" << ((i == 0) ? "begin" : (i == 1) ? "middle" : (i == 2) ? "end" : "none");
            std::cout << std::endl;
            cv::Mat mask = cv::Mat::zeros(size, CV_8UC1);
            mask.at<unsigned char>(pos) = 0xFF;
            m.setTo(cv::Scalar::all(0));
            m.setTo(cv::Scalar::all(nz ? 1 : 0), mask);
            std::vector<bool> results;
            std::vector<double> timings;

            {
              bool res = false;
              auto ref = cv::getTickCount();
              for(size_t k = 0 ; k<iterations ; ++k)
                res = cv::hasNonZero(m);
              auto now = cv::getTickCount();
              const bool error = (res != nz);
              if (error)
                printf("!!ERROR!!\r\n");
              results.push_back(res);
              timings.push_back(1000.*(now-ref)/cv::getTickFrequency());
            }
            {
              bool res = false;
              auto ref = cv::getTickCount();
              for(size_t k = 0 ; k<iterations ; ++k)
                res = (cv::countNonZero(m)>0);
              auto now = cv::getTickCount();
              const bool error = (res != nz);
              if (error)
                printf("!!ERROR!!\r\n");
              results.push_back(res);
              timings.push_back(1000.*(now-ref)/cv::getTickFrequency());
            }

            const size_t bestTimingIndex = (std::min_element(timings.begin(), timings.end())-timings.begin());
            if ((bestTimingIndex != 0) || (std::find_if_not(results.begin(), results.end(), [&](bool r) {return (r == nz);}) != results.end()))
            {
              std::cout << "cv::hasNonZero\t\t=>" << results[0] << ((results[0] != nz) ? "  ERROR" : "") << "   perf:" << timings[0] << "ms => " << (iterations/timings[0]*1000) << " im/s" << ((bestTimingIndex == 0) ? " * " : "") << std::endl;
              std::cout << "cv::countNonZero\t=>" << results[1] << ((results[1] != nz) ? "  ERROR" : "") << "   perf:" << timings[1] << "ms => " << (iterations/timings[1]*1000) << " im/s" << ((bestTimingIndex == 1) ? " * " : "") << std::endl;
            }
          }
        }
      }
    }
  }

```

Here is a report of this benchmark (it only reports timings when `cv::countNonZero()` is faster)
My CPU is an Intel Core I7 4790 @ 3.60Ghz

```

============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
cv::hasNonZero          =>1   perf:0.353764ms => 2.82674e+06 im/s
cv::countNonZero        =>1   perf:0.282044ms => 3.54555e+06 im/s *
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:0.610478ms => 1.63806e+06 im/s
cv::countNonZero        =>1   perf:0.283182ms => 3.5313e+06 im/s *
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:0.630115ms => 1.58701e+06 im/s
cv::countNonZero        =>0   perf:0.282044ms => 3.54555e+06 im/s *
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:0.607347ms => 1.64651e+06 im/s
cv::countNonZero        =>1   perf:0.467037ms => 2.14116e+06 im/s *
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:0.618162ms => 1.6177e+06 im/s
cv::countNonZero        =>0   perf:0.468175ms => 2.13595e+06 im/s *
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:895.381ms => 1116.84 im/s
cv::countNonZero        =>1   perf:882.569ms => 1133.06 im/s *
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:899.53ms => 1111.69 im/s
cv::countNonZero        =>0   perf:870.894ms => 1148.24 im/s *
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:2018.92ms => 495.313 im/s
cv::countNonZero        =>1   perf:1966.37ms => 508.552 im/s *
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:2005.87ms => 498.537 im/s
cv::countNonZero        =>0   perf:1992.78ms => 501.812 im/s *
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=false  pos=none
done

```
2023-06-09 13:37:20 +03:00
Zihao Mu
eec8a20c33
Merge pull request #23763 from zihaomu:add_runtime_check
DNN: fix bug for X86 Winograd #23763

Address https://github.com/opencv/opencv/issues/23760
The patch aims to add a runtime check for X86 platform without AVX(2).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-09 09:18:12 +03:00
Alexander Smorkalov
5d913f4d72
Merge pull request #21959 from cpoerschke:4.x-intelligent-scissors-optimisation
imgproc: optimise local cost computation in IntelligentScissorsMB::buildMap
2023-06-08 16:45:04 +03:00
Alex
b729d8e821 added graphicalCodeDetector, remove QRCodeDetectorBase 2023-06-08 14:50:58 +03:00
Alexander Smorkalov
6d2cbc4055
Merge pull request #23761 from LaurentBerger:typeblobfromimages
checktype in blobFromImages and blobFromImagesWithParams
2023-06-08 09:59:01 +03:00
Christine Poerschke
f597838685 imgproc: optimise local cost computation in IntelligentScissorsMB::buildMap 2023-06-07 22:06:52 +01:00
TolyaTalamanov
af95395fe7 Fix ifdef condition 2023-06-07 15:42:54 +01:00
unknown
5f8e43da85 checktype in blobFromImages and blobFromImagesWithParams 2023-06-07 16:15:58 +02:00
Abduragim Shtanchaev
6b53fe8f7b
Merge pull request #23746 from Abdurrahheem:ash/graph_simplifier
Assertion Fix in Split Layer #23746

### Pull Request Readiness Checklist

This PR fixes issue mentioned in [#23663](https://github.com/opencv/opencv/issues/23663)
Merge with https://github.com/opencv/opencv_extra/pull/1067

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-07 16:01:42 +03:00
Christine Poerschke
d3e7968927
Merge pull request #23688 from cpoerschke:4.x-pr-21959-prep
imgproc: add contour values check to IntelligentScissorsMB tests

Preparation for the #21959 changes as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1560511500 suggestion.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-07 11:32:17 +03:00
Alexander Smorkalov
b9ce87e8e2
Merge pull request #23750 from mshabunin:fix-bgr2hls-access
imgproc/cvtColor: fixed invalid read in BGR2HLS
2023-06-06 11:34:08 +03:00
Alexander Smorkalov
af03e000c7
Merge pull request #23732 from vekkuli:vekkuli-patch-create-featherblender
Fix missuse of try_gpu in stitching/FeatherBlender
2023-06-06 10:00:36 +03:00
Maksim Shabunin
adab462e42 imgproc/cvtColor: fixed invalid read in BGR2HLS 2023-06-05 23:25:44 +03:00
Alex
b5ac7ef2f2 fix cornerRefinementMethod binding 2023-06-05 11:04:11 +03:00
Wang Kai
983925c685 fixing typo 2023-06-04 19:06:26 +08:00
Jaakko Rantala
385003e9fe
Update blenders.cpp
Removed passing try_gpu parameter to FeatherBlender constructor because it only has sharpness parameter.
2023-06-02 16:46:05 +03:00
Alexander Panov
9fa014edcd
Merge pull request #23264 from AleksandrPanov:add_detect_qr_with_aruco
Add detect qr with aruco #23264

Using Aruco to detect finder patterns to search QR codes.

TODO (in next PR):
- add single QR detect (update `detect()` and `detectAndDecode()`)
- need reduce full enumeration of finder patterns
- need add finder pattern info to `decode` step
- need to merge the pipeline of the old and new algorithm

[Current results:](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit#gid=1192415584)
+20% total detect, +8% total decode in OpenCV [QR benchmark](https://github.com/opencv/opencv_benchmarks/tree/develop/python_benchmarks/qr_codes) 

![res1](https://user-images.githubusercontent.com/22337800/231228556-191d3eae-a318-44e1-af99-e7d420bf6248.png)


78.4% detect, 58.7% decode vs 58.5 detect, 50.5% decode in default

[main.py.txt](https://github.com/opencv/opencv/files/10762369/main.py.txt)

![res2](https://user-images.githubusercontent.com/22337800/231229123-ed7f1eda-159a-444b-a3ff-f107d8eb4a20.png)


add new info to [google docs](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit?usp=sharing)


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-06-02 16:18:24 +03:00
Anatoliy Talamanov
5330112f05
Merge pull request #23595 from TolyaTalamanov:at/implement-openvino-backend
[G-API] Implement OpenVINO 2.0 backend #23595

### Pull Request Readiness Checklist

Implemented basic functionality for `OpenVINO` 2.0 G-API backend.

#### Overview
- [x] Implement `Infer` kernel with some of essential configurable parameters + IR/Blob models format support.
- [ ] Implement the rest of kernels: `InferList`, `InferROI`, `Infer2` + other configurable params (e.g reshape)
- [x] Asyncrhonous execution support
- [ ] Remote context support

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-02 14:31:03 +03:00
Alexander Smorkalov
2104d61d4a
Merge pull request #23668 from TolyaTalamanov:at/fix-resize-applying-logic-ie-backend
WIP: [G-API] IE Backend: Update the condition for applying the resize preprocessing
2023-06-01 13:55:07 +03:00
Alexander Smorkalov
0787c31f41 Python package classifiers sync with OpenCV-Python repo. 2023-06-01 10:49:27 +03:00
Anna Khakimova
6d3dd24622
Merge pull request #21797 from anna-khakimova:ak/merge3_extend_supported_types
GAPI Fluid SIMD:Add support of new several types for the Merge3

- Support of the new several types was added.
- Fixes for the Split/Merge and ConvertTo issues.
2023-05-31 14:59:39 +03:00
Dmitry Matveev
fc5d412ba7
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597

# Changes overview

## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python

* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)

UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.

### Details (taken from @TolyaTalamanov's comment):

`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:

1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
#     norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
#     # add batch channel
#     norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
#     return norm_img_data

# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```

2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.

---

`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.

## 2. Expose Fluid & kernel package-related functionality in Python

* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`

Added a test for the above.

## 3. Fixed issues with Python stateful kernel handling

Fixed error message when `outMeta()` of custom python operation fails.

## 4. Fixed various issues in Python tests

1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:52:17 +03:00
Pierre Chatelier
93d490213f
Merge pull request #23690 from chacha21:rotatedRectangleIntersection_precision
better accuracy for _rotatedRectangleIntersection() (proposal for #23546) #23690

_rotatedRectangleIntersection() can be (statically) customized to use double instead of float for better accuracy
this is a proposal for experimentation around #23546

for better accuracy, _rotatedRectangleIntersection() could use double. It will still return cv::Point2f list for backward compatibility, but the inner computations are controlled by a typedef

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:46:39 +03:00
Alexander Smorkalov
d24ffe9a65
Merge pull request #23705 from asmorkalov:as/cxx-named-arguments
Re-implement named parameters bindings for Python #23705

Reverted named argument handling from #19156.
Ported new solution from #23224
The port is required to harmonize 4.x -> 5.x merges.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:41:41 +03:00
Olivier Hotel
0442c6fa81 Addition of normalize_axis to ONNXImporter::parseSqueeze to support negative values for the axes attribut.
Negative values are part of the ONNX optset>=11.

Signed-off-by: Olivier Hotel <olivier.hotel@orange.com>
2023-05-30 10:21:27 +02:00
Abduragim Shtanchaev
ecd2e8ff47 added index that check all inputs of nodes that
match
2023-05-29 14:48:42 +03:00
Alexander Smorkalov
02397ef851
Merge pull request #23567 from seanm:UBSan-overflow
Reformulated some pointer arithmetic to avoid (unsigned) overflow
2023-05-29 12:19:34 +03:00
Christine Poerschke
b5e9eb742c
Merge pull request #23698 from cpoerschke:4.x-pr-21959-perf
imgproc: add basic IntelligentScissorsMB performance test #23698

Adding basic performance test that can be used before and after the #21959 changes etc. as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1565240926 comment.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-29 11:02:59 +03:00
triple Mu
1bffe170e1
Update setup.py
Fix error:
UnboundLocalError: local variable 'typing_stub_files' referenced before assignment
2023-05-27 17:23:32 +08:00
Alexander Smorkalov
7b998c30e7
Merge pull request #23694 from dkurt:update_matchTemplateMask
Update matchTemplate with mask
2023-05-27 09:42:55 +03:00
Sean McBride
2083fdc9c0 Fixed UBSan warning about undefined pointer arithmetic overflow
Pointer arithmetic overflow is always undefined, whether signed or unsigned.

It warned here:

`Addition of unsigned offset to 0x00017fd31b97 overflowed to 0x00017fd30c97`

Convert the offset to a signed number, so that we can offset either forward or backwards.

In my own use of OpenCV at least, this is the only case of pointer arithmetic overflow.
2023-05-26 15:54:52 -04:00
Alexander Smorkalov
d1b158b9dd
Merge pull request #23692 from asmorkalov:as/ffmpeg_fps_3.4
backport to 3.4: Fixed FPS computation on some videos for FFmpeg backend
2023-05-26 20:47:13 +03:00
Dmitry Kurtaev
380caa1a87
Merge pull request #23691 from dkurt:pycv_float16_fixes
Import and export np.float16 in Python #23691

### Pull Request Readiness Checklist

* Also, fixes `cv::norm` with `NORM_INF` and `CV_16F`

resolves https://github.com/opencv/opencv/issues/23687

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-26 18:56:21 +03:00
Alexander Smorkalov
900f17d563
Merge pull request #23677 from asmorkalov:as/objc_naming_backport
ObjC naming backport from 5.x
2023-05-26 18:54:34 +03:00
Dmitry Kurtaev
c97942cf78 Fix mask thresholding 2023-05-26 18:51:33 +03:00
captain-n3m0
6157db6462 Fixed matchTemplate function. #23585 2023-05-26 18:51:01 +03:00
Duong Dac
a9424868a1
Merge pull request #20370 from ddacw:stub-gen-next
Python typing stub generation #20370

Add stub generation to `gen2.py`, addressing #14590.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-26 18:25:46 +03:00
Alexander Smorkalov
cbda161c39 Fixed FPS computation on some videos for FFmpeg backend. 2023-05-26 14:36:13 +03:00
Alexander Smorkalov
cf0ba039c3
Merge pull request #23625 from zihaomu:improve_conv
DNN: Remove unnecessary flags for convolution
2023-05-26 12:59:36 +03:00
Alexander Smorkalov
65487946cc Added final constrants check to solveLP to filter out flating-point numeric issues. 2023-05-25 17:29:01 +03:00
Dmitry Kurtaev
4823285b55
Merge pull request #23679 from dkurt:py_cv_type_macro
Python bindings for CV_8UC(n) and other types macros #23679

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23628#issuecomment-1562468327

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 15:54:41 +03:00
Alexander Smorkalov
26a7b332cb
Merge pull request #23671 from zihaomu:fix_potential_bug
DNN: fix potential bug, stride should not be set as 0.
2023-05-25 13:36:37 +03:00
Yuantao Feng
f07b01cc34
Merge pull request #23655 from fengyuentau:qlinearsoftmax
Support ONNX operator QLinearSoftmax in dnn #23655

Resolves https://github.com/opencv/opencv/issues/23636.
Merge with https://github.com/opencv/opencv_extra/pull/1064.

This PR maps the QLinearSoftmax (from com.microsoft domain) to SoftmaxInt8 in dnn along with some speed optimization.

Todo:
- [x] support QLinearSoftmax with opset = 13
- [x] add model and test data for QLinearSoftmax with opset = 13
- [x] ensure all models have dims >= 3.
- [x] add the script to generate model and test data 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 13:35:58 +03:00
Alexander Smorkalov
bbda6f4c57 Backport 5.x: Support for module names that start from digit in ObjC bindings generator. 2023-05-25 11:45:59 +03:00
Dmitry Kurtaev
29b2f77b5f
Merge pull request #23674 from dkurt:py_cv_maketype
CV_MAKETYPE Python binding #23674 

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23628

```python
import cv2 as cv

t = cv.CV_MAKETYPE(cv.CV_32F, 4)
```

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 09:45:22 +03:00
Maksim Shabunin
537060d96f
Merge pull request #23672 from mshabunin:fix-javadoc17 2023-05-24 23:07:27 +03:00
zihaomu
4384e77bd1 when stride ==0, it should be bug 2023-05-24 21:57:59 +08:00
TolyaTalamanov
dc714c1181 Change logic for applying resize 2023-05-24 13:06:19 +00:00
Alexander Smorkalov
d4861bfd1f Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-05-24 14:37:48 +03:00
Akshat Chauhan
c07145fe28
Merge pull request #23662 from akormous:docfix
Fix truncated sentenced in boxPoints documentation #22975 #23662

Resolves #22975

Completed the sentence as per the suggestion given in the issue #22975
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-24 11:41:25 +03:00
Alexander Smorkalov
98d678c2d2 Added check that YUYV input of cvtColor has even width. 2023-05-23 14:17:43 +03:00
Alexander Smorkalov
4a559bc2ab
Merge pull request #23656 from peters:patch-2
Build fix for AVX 256
2023-05-23 09:20:34 +03:00
Alexander Smorkalov
e3c5c0906b
Merge pull request #23371 from cudawarped:cuda_add_futher_python_interop
`cuda`: Add bindings to allow `GpuMat` and `Stream` objects to be initialized from memory initialized in other libraries
2023-05-22 18:17:12 +03:00
Alexander Smorkalov
b122a4b436
Merge pull request #23646 from dkurt:dnn_ie_region_fix
Fix Region layer with OpenVINO in case of different width/height
2023-05-22 16:22:50 +03:00
Christine Poerschke
d00a96315e
Merge pull request #23612 from cpoerschke:3.4-issue-21532
QRCodeDetector: don't floodFill with outside-of-image seedPoint #23612

Fixes #21532.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-22 13:34:30 +03:00
Peter Rekdal Khan-Sunde
04970490ec
Build fix
/build/build_cuda/3p/opencv/linux-x64/ubuntu22.04/Debug/modules/dnn/src/layers/cpu_kernels/convolution.cpp: In function 'void cv::dnn::packData8(char*&, float*&, int&, int&, int&, const int*, int, int, int)':
/build/build_cuda/3p/opencv/linux-x64/ubuntu22.04/Debug/modules/dnn/src/layers/cpu_kernels/convolution.cpp:448:43: error: 'CONV_NR' was not declared in this scope; did you mean 'CONV_3D'?
  448 |                 vx_store(inpbufC_FP32 + k*CONV_NR, vx_load(inptrInC + k1));
      |                                           ^~~~~~~
      |                                           CONV_3D
2023-05-22 11:25:04 +02:00
cudawarped
7539abecdb cuda: add python bindings to allow GpuMat and Stream objects to be initialized from raw pointers 2023-05-22 11:02:04 +03:00
Alexander Smorkalov
3f3c821800
Merge pull request #23631 from asmorkalov:as/eigen_NOMINMAX_warning_fix
Build warning fix on Windows for Eigen wrapper.
2023-05-19 21:06:41 +03:00
Alexander Smorkalov
c946285a07
Merge pull request #23601 from cudawarped:videocapture_threading
Videoio: FFMpeg remove locks from `VideoCapure/VideoWriter::open()` to fix 20114
2023-05-19 20:33:25 +03:00
Dmitry Kurtaev
c92135bdd1
Merge pull request #23634 from dkurt:fix_nearest_exact
Fix even input dimensions for INTER_NEAREST_EXACT #23634

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/22204
related: https://github.com/opencv/opencv/issues/9096#issuecomment-1551306017

/cc @Yosshi999

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-19 20:32:04 +03:00
Alexander Smorkalov
f2311d1bfd
Merge pull request #23645 from Abdurrahheem:ash/tf_init_input_check
Add assert to check if layer input size is not empty
2023-05-19 13:28:24 +03:00
Zihao Mu
5025f29378
speed up vulkan dnn, and support ios and apple m1 chip. (#23349) 2023-05-18 20:02:27 +03:00
Dmitry Kurtaev
af14780526 Fix Region layer with OpenVINO in case of different width/height 2023-05-18 17:45:30 +03:00
Abduragim Shtanchaev
2b9d2c726a add assert to check if layer input size is not empty 2023-05-18 16:17:57 +03:00
SoY Szala
340e999c45 Proposed solution for issue #23633 2023-05-17 23:06:59 +02:00
Abduragim Shtanchaev
d2143bcd44
Merge pull request #23614 from Abdurrahheem:lstm_layout_attribute
LSTM ONNX Layout Attribute Support #23614 

### Explanation

This PR contains necessary changes to support `layout` attribute. This attributes is present in [ONNX](https://github.com/onnx/onnx/blob/main/docs/Operators.md#lstm) and [Torch](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#lstm) (in touch it is name as `batch_first=True`) libraries. When `layout = 1` input to LSTM layer is expected to have batch dimension first -> `[batch_size, sequence_length, features]` vs `layout = 0` - default `[sequence_length, batch_size, features]`

### Test Data

Test data and data generator for PR located here [#1063](https://github.com/opencv/opencv_extra/pull/1063)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-17 22:46:56 +03:00
Alexander Smorkalov
ae8c90301f Fixed mask handling in AffineFeature. 2023-05-17 12:04:52 +03:00
Alexander Smorkalov
4eec739624 Build warning fix on Windows for Eigen wrapper. 2023-05-17 10:12:02 +03:00
Yuantao Feng
eefee8574a
dnn: refactor reduce (#23613)
* initial impl

* remove reduce in8; fix reduce importer

* fix bugs and add log sum exp

* remove unnecessary header and fix indentation
2023-05-17 10:03:45 +03:00
Zihao Mu
5229312ad2
Merge pull request #22275 from zihaomu:fp16_support_conv
DNN: FP16 support on Convolution 2D #22275 

## FP16 support on ARM platform
This PR proposes to support FP16 backend in Convolution.
For now, we only support FP16 at ARM aarch64.

In addition to adding fp16, I also added `seperateIm2col` optimization in this patch.

## How to use FP16 to speed up convolution?
```
Net net = readNet(modelPath);
net.setPreferableTarget(DNN_TARGET_CPU_FP16);
net.setInput(blob);
Mat output = net.forward();
```

### TODO List
| Task | Status | Remarks |
|:-------:|:--------:|:------------:|
| Convolution 2D FP16 | ✔️ | Done |
| Winograd FP16 | Because the current modification has reached 2k lines, winograd fp16 will be completed in the next PR. |  |
| Accuracy Test | ✔️ | Done |
| Performance Test | ✔️ | Done |
| Compiler bug | ✔️ | Done |

### Speed Test for FP 16.

**Test on M1 chip, 4 threads.**

| Model Name | FP32 (Conv+Wino) | Conv(FP16) + Wino(FP 32) |
|:-------:|:--------:|:------------:|
| ReseNet 50 | 26.0 ms | **18.05 ms** (25% speed up)|
| MobileNet V2 | 4.17 ms | **3.09 ms (29% speed up)** |

### Speed Test for `seperateIm2col` trick on X86.
**Test on AMD 5600x, 12 threads.**
| Model Name | 4.x | Patch |
|:-------:|:--------:|:------------:|
| MobileNet V2 | 5.6 ms | **3.0 ms (46% speed up)** |

### Performance Test

#### Performance Test of X86 platform: AMD 5600X, with `-perf_threas=1`
|Name of Test|4.x|patch|patch vs 4.x (x-factor)|
|---|:-:|:-:|:-:|
|Name of Test|4.x 0|fp16pr final|fp16pr final vs 4.x 0 (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.00|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.03|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.001|0.001|0.92|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.002|0.003|0.95|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.006|0.006|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.045|0.033|1.39|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.011|0.009|1.17|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.109|0.078|1.39|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.040|0.042|0.94|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.326|0.342|0.95|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.580|0.589|0.99|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.293|1.382|0.94|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.590|3.710|0.97|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.120|1.191|0.94|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.576|2.872|0.90|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.599|4.670|0.98|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|9.230|9.582|0.96|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|65.946|69.381|0.95|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|18.915|19.289|0.98|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|1.404|1.457|0.96|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|2.060|1.501|1.37|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.409|1.464|0.96|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|1.793|1.838|0.98|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.207|1.199|1.01|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.277|1.275|1.00|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.319|2.370|0.98|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.351|1.346|1.00|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|3.520|3.612|0.97|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.876|1.880|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.981|1.995|0.99|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|2.620|2.627|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|4.202|4.123|1.02|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.429|2.445|0.99|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|2.591|2.576|1.01|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|3.005|2.998|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|3.515|3.532|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|3.115|3.134|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.937|3.899|1.01|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|5.533|5.471|1.01|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.472|3.464|1.00|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|4.302|4.322|1.00|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|6.100|6.035|1.01|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|6.580|6.484|1.01|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|9.741|9.634|1.01|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|10.131|10.156|1.00|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|12.391|12.350|1.00|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|91.074|87.893|1.04|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|5.903|5.903|1.00|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.890|6.794|1.01|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.160|5.131|1.01|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|4.970|5.036|0.99|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|5.045|5.015|1.01|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|11.583|11.343|1.02|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.348|5.320|1.01|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|5.357|5.396|0.99|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|6.050|6.006|1.01|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|5.952|5.953|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|8.014|8.014|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.472|12.577|0.99|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|10.803|10.655|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|18.429|13.405|1.37|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|6.659|6.647|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|14.192|13.819|1.03|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|6.045|6.068|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.742|12.828|0.99|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|8.046|7.773|1.04|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.440|17.192|1.01|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|15.418|14.972|1.03|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.430|0.430|1.00|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|6.692|6.663|1.00|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|6.350|6.347|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.267|0.265|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|7.755|7.558|1.03|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.203|0.202|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.663|10.576|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|10.827|10.614|1.02|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|7.049|6.947|1.01|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|6.900|6.901|1.00|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.165|0.165|1.00|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|17.953|17.251|1.04|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|7.430|7.320|1.01|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|22.187|21.705|1.02|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|8.349|8.126|1.03|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|8.273|8.297|1.00|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|8.169|8.094|1.01|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|13.602|13.359|1.02|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|8.633|8.584|1.01|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|29.339|28.897|1.02|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|13.000|12.920|1.01|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|14.262|13.319|1.07|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|27.453|27.253|1.01|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|32.052|27.269|1.18|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|15.363|15.208|1.01|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|18.543|18.434|1.01|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|39.114|37.954|1.03|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|36.271|36.972|0.98|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|19.262|19.427|0.99|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.298|19.349|1.00|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.261|19.847|1.02|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.867|21.525|1.02|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|51.756|49.979|1.04|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|28.133|27.060|1.04|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|25.035|24.980|1.00|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|25.858|25.821|1.00|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|27.313|27.149|1.01|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|28.219|28.111|1.00|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|46.025|46.674|0.99|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|30.220|29.446|1.03|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|49.410|48.708|1.01|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|38.203|38.001|1.01|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|39.961|39.021|1.02|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|48.685|47.075|1.03|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|75.114|72.586|1.03|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|41.222|41.144|1.00|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|46.220|46.353|1.00|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|98.201|98.771|0.99|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|100.106|96.971|1.03|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|146.977|140.445|1.05|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|198.618|194.665|1.02|


#### Performance Test of ARM platform: apple M1, with `-perf_threas=1`

Min (ms)

|Name of Test|4.x|patch|4.x vs patch (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|1.07|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|1.10|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.002|0.002|0.97|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.003|0.003|0.84|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.009|0.009|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.027|0.030|0.90|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.008|0.007|1.07|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.066|0.072|0.91|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.090|0.054|1.68|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.328|0.409|0.80|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.659|0.697|0.95|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.266|1.403|0.90|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.550|4.145|0.86|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.188|1.375|0.86|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.683|3.236|0.83|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.491|5.501|0.82|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|8.916|10.181|0.88|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.995|72.296|0.97|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|22.531|23.139|0.97|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|2.239|1.933|1.16|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU_FP16)|-|1.010|-|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|3.134|2.068|1.52|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU_FP16)|-|1.062|-|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.918|1.920|1.00|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU_FP16)|-|1.014|-|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.340|2.352|0.99|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.247|-|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.116|1.111|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU_FP16)|-|1.114|-|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.116|1.112|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|1.113|-|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|3.067|3.085|0.99|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.622|-|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.153|1.187|0.97|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU_FP16)|-|1.150|-|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|4.804|4.849|0.99|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU_FP16)|-|2.922|-|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.463|1.469|1.00|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.459|-|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.577|1.580|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|1.580|-|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|1.826|1.818|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|1.817|-|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|6.541|5.081|1.29|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|2.809|-|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.912|1.919|1.00|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU_FP16)|-|1.919|-|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|1.961|1.971|0.99|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|1.961|-|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.317|2.329|0.99|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.322|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|2.920|2.947|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|2.924|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|2.467|2.466|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|2.496|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|3.028|2.997|1.01|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|2.986|-|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|4.353|4.355|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|4.355|-|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.762|2.793|0.99|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|2.797|-|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|3.428|3.226|1.06|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU_FP16)|-|3.223|-|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|3.967|3.957|1.00|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU_FP16)|-|3.960|-|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|4.806|4.387|1.10|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU_FP16)|-|4.366|-|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|14.509|11.756|1.23|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|6.510|-|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|13.718|13.287|1.03|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.190|-|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|15.133|14.853|1.02|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU_FP16)|-|8.671|-|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|41.928|43.328|0.97|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|38.072|-|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.409|4.428|1.00|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.427|-|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.144|5.363|1.15|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU_FP16)|-|5.368|-|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.926|3.932|1.00|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.938|-|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.920|3.915|1.00|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.950|-|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|3.767|3.764|1.00|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|3.762|-|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|19.959|13.875|1.44|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU_FP16)|-|7.781|-|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|3.951|3.955|1.00|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|3.969|-|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|4.050|4.034|1.00|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.093|-|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|4.923|4.506|1.09|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.509|-|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|4.759|4.476|1.06|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.447|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|6.079|5.628|1.08|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU_FP16)|-|5.625|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.843|17.523|1.13|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.917|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|8.334|8.247|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU_FP16)|-|8.246|-|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|23.164|18.199|1.27|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.305|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|5.184|5.178|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU_FP16)|-|5.149|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.990|18.103|0.99|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|9.777|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|4.831|4.522|1.07|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU_FP16)|-|4.523|-|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.328|17.319|1.00|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|8.948|-|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|5.944|5.961|1.00|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU_FP16)|-|5.936|-|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.811|20.064|0.99|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU_FP16)|-|11.705|-|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|22.398|17.686|1.27|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU_FP16)|-|9.859|-|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.416|0.416|1.00|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.417|-|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|5.356|5.110|1.05|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU_FP16)|-|5.114|-|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|5.092|4.748|1.07|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU_FP16)|-|4.754|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.260|0.229|1.13|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.229|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|5.872|5.460|1.08|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU_FP16)|-|5.460|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.161|0.161|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.161|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|7.176|7.175|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|7.162|-|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|7.174|7.185|1.00|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU_FP16)|-|7.157|-|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|5.400|5.180|1.04|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.201|-|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|5.330|5.188|1.03|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.177|-|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.115|0.115|1.00|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|0.115|-|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|26.156|20.222|1.29|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU_FP16)|-|11.203|-|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|5.627|5.543|1.02|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU_FP16)|-|5.506|-|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|27.925|27.741|1.01|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU_FP16)|-|17.217|-|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|6.359|6.062|1.05|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.048|-|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|6.559|6.322|1.04|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|6.280|-|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|6.412|6.200|1.03|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.197|-|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|9.167|8.624|1.06|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU_FP16)|-|8.626|-|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|6.755|6.491|1.04|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU_FP16)|-|6.520|-|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|35.664|34.752|1.03|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|20.260|-|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|9.514|9.414|1.01|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.462|-|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|10.631|9.963|1.07|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|9.935|-|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|37.465|36.798|1.02|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|19.569|-|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|38.157|36.157|1.06|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU_FP16)|-|18.902|-|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.356|10.401|1.00|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|10.360|-|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|12.641|12.150|1.04|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|12.162|-|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|50.545|50.505|1.00|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|27.950|-|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|54.233|49.603|1.09|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU_FP16)|-|26.515|-|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|13.779|12.968|1.06|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|12.984|-|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|15.809|15.329|1.03|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|15.433|-|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|14.563|14.527|1.00|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|14.480|-|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|16.714|16.484|1.01|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|16.362|-|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|77.832|65.729|1.18|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU_FP16)|-|32.065|-|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|21.903|20.386|1.07|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|20.416|-|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|20.405|18.148|1.12|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU_FP16)|-|18.128|-|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.334|18.521|1.10|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|18.495|-|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.527|19.584|1.10|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|19.630|-|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|22.715|20.057|1.13|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU_FP16)|-|20.068|-|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|26.228|24.992|1.05|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|24.957|-|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|21.524|21.581|1.00|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|21.782|-|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|34.094|31.964|1.07|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|31.925|-|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|28.677|27.813|1.03|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.808|-|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|31.274|27.892|1.12|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|27.910|-|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|30.533|30.007|1.02|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|30.089|-|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|39.837|38.312|1.04|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|38.477|-|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|32.480|29.237|1.11|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU_FP16)|-|29.452|-|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|33.544|32.832|1.02|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU_FP16)|-|32.784|-|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|134.481|130.678|1.03|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU_FP16)|-|70.134|-|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|127.930|126.530|1.01|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU_FP16)|-|65.261|-|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|201.346|187.007|1.08|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU_FP16)|-|91.525|-|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|252.038|245.587|1.03|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU_FP16)|-|125.477|-|

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-17 09:38:33 +03:00
cudawarped
99ef35a353 Videoio: FFMpeg remove locks if OPENCV_FFMPEG_IS_THREAD_SAFE==true 2023-05-17 08:20:46 +03:00
Alexander Smorkalov
05084aa63e Restored Java bindings for CPU features management. 2023-05-16 18:04:09 +03:00
Maksim Shabunin
001a2c5195
Merge pull request #23606 from mshabunin:fix-ffmpeg-packet-limit
videoio/FFmpeg: increased packet read attempt limit, allow configuring it

resolves #9455
related #3225

* Use different counters for wrong packets recieved by demuxer and errors from decoder
* Allow modifying these counters via environment variables `OPENCV_FFMPEG_READ_ATTEMPTS`/`OPENCV_FFMPEG_DECODE_ATTEMPTS`
* Added logging when reading breaks at one of error limits

Notes:
* I've been able to reproduce original issue with a video file with 14 total streams (video + audio + subtitles), at some point in the video only packets from the last stream are being sent by the demuxer, thus exceeding our limit. For my specific video total number of packets from wrong stream was about 2700. I've chosen 4096 as default value.
* Default limit of decoding attempts is quite low, because I'm not sure in which cases it can be exceeded (network stream?). I tried to read 8k video from the disk, but it did not cause break at decode point.
2023-05-16 14:31:04 +03:00
Alexander Smorkalov
59ca444b26
Merge pull request #23560 from WanliZhong:eltwise_cuda_bug
DNN/CUDA: Solve the bug of same shape broadcast with CUDA
2023-05-16 14:16:37 +03:00
Alexander Alekhin
04d71da6e7 Merge pull request #23566 from seanm:atomic-bool 2023-05-16 10:46:59 +00:00
zihaomu
91b6c8507a remove flag of convolution 2023-05-16 15:29:20 +08:00
Alexander Smorkalov
0800574c12
Merge pull request #23619 from TinyTinni:pixel-info-font-color
Fixes pixel info color font for dark Qt themes
2023-05-16 09:15:15 +03:00
Matthias Möller
fc43e51331 sets pixel info font colors based on current palette 2023-05-15 17:42:48 +02:00
Dmitry Kurtaev
a8d3d1f6f9
Merge pull request #23604 from dkurt:dnn_no_protobuf
Build DNN without Protobuf

DNN module can be built without Protobuf for Darknet, TFLite, OpenVINO, Torch (not PyTorch) models.

```
cmake \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_LIST=dnn \
    -DWITH_PROTOBUF=OFF \
    -DWITH_OPENCL=OFF

7.1M    lib/libopencv_dnn.so.4.7.0
```


```
cmake \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_LIST=dnn \
    -DWITH_OPENCL=OFF

3.9M    lib/libopencv_dnn.so.4.7.0
```

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-15 12:23:18 +03:00
wanli
46991bcd62 Solve the bug of same shape broadcast with CUDA 2023-05-15 13:55:38 +08:00
Alexander Smorkalov
85b04f0b4d
Merge pull request #23557 from WanliZhong:eltwise_cpu_bug
fix nary elementwise bug in cpu
2023-05-11 15:56:46 +03:00
Dmitry Kurtaev
676afdc494 Update FlatBuffers source code to 23.5.9 2023-05-10 14:39:36 +03:00
Giles Payne
a44a6f6c87 Fix issue in Objective-C generator when a class name is a substring of its base class name 2023-05-10 15:34:25 +09:00
wanli
85cc4086c8 fix nary elementwise bug in cpu 2023-05-10 14:29:33 +08:00
vovka643
d6dc91b4d4 Added depricated_backends list. Added new information masseges. It needs to inform user, when he tries to use depricated or not uses backend 2023-05-05 14:22:18 +03:00
Alexander Smorkalov
25c28c5da4
Merge pull request #23485 from zihaomu:add_onnx_where
DNN: add ONNX where node support
2023-05-05 09:21:07 +03:00
zihaomu
0513741a85 add broadcast where node 2023-05-05 11:16:19 +08:00
Alexander Smorkalov
351589e5fb
Merge pull request #23491 from fengyuentau:patch_for_segment_anything
Fixes for Segment Anything
2023-05-04 21:07:58 +03:00
kallaballa
a2be9e9fc1 Log a debug message if a capture backend is generally available but isn't capabable of a capture mode. 2023-05-04 19:18:58 +03:00
Stefan Becker
e55784a1e8 ChArUco pre460 pattern support 2023-05-04 16:59:04 +03:00
n0099
868787c364
Merge pull request #23342 from n0099:#23335
Improve document of cv::RotatedRect for #23335 #23342

fix #23335

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-03 14:15:53 +03:00
Sean McBride
27e10efa66 Use std::atomic<bool> as it's necessary for correct thread safety
Now that C++11 is required, we can unconditionally use std::atomic in this case, which is more correct.
2023-05-01 16:44:34 -04:00
Alexander Alekhin
3c76b33532 Merge pull request #22614 from zihaomu:add_std2DB_API 2023-05-01 19:37:23 +00:00
Maxim Smolskiy
658f18c713
Fix function name in comment 2023-04-30 17:30:01 +03:00
zihaomu
8be93a6de7 add scale factor to DB demo. 2023-04-30 22:03:21 +08:00
Pierre Chatelier
6dd8a9b6ad
Merge pull request #13879 from chacha21:REDUCE_SUM2
add REDUCE_SUM2 #13879 

proposal to add REDUCE_SUM2 to cv::reduce, an operation that sums up the square of elements
2023-04-28 20:42:52 +03:00
Laurent Berger
23b819efb8
Merge pull request #23555 from LaurentBerger:doc_format
don't ignore documentation for cv::format in doxygen #23555 

Issue https://github.com/opencv/opencv/issues/23553

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work issue
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-28 15:24:07 +03:00
Alexander Smorkalov
9161e40aa0
Merge pull request #23529 from dmatveev:dm/gapi_onnx_rt_1.14.1
Bump supported ONNX RT version to 1.14.1
2023-04-28 15:19:06 +03:00
Onuralp Sezer
5ccb4e0487
Merge pull request #23447 from onuralpszr:gradle80_namespace
AGP 8.0 build.gradle namespace and aidl buildFeature requirement added #23447 

Hello,

Android Gradle Plugin version 8.0 is asking for namespace. This is become mandatory and after I update my AGP to 8.0, I got this error 


```
Namespace not specified. Please specify a namespace in the module's build.gradle file like so:

android {
    namespace 'com.example.namespace'
}

If the package attribute is specified in the source AndroidManifest.xml, it can be migrated automatically to the namespace value in the build.gradle file using the AGP Upgrade Assistant; please refer to https://developer.android.com/studio/build/agp-upgrade-assistant for more information.
```

This change fix this future releases. However I am not sure how opencv wants to user namespace I used "org.opencv" if there is a different namespace please let me know so I can changed that too. Also should I add namepsace into "opencv/modules/java/android_sdk/android_gradle_lib/build.gradle" here ?

### Sources

Android developer link: https://developer.android.com/studio/preview/features#namespace-dsl
Issue Tracker Google: https://issuetracker.google.com/issues/191813691?pli=1#comment19

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-04-28 13:41:39 +03:00
Alexander Smorkalov
6dbc5e032f
Merge pull request #23545 from Abdurrahheem:tests_lstm_init_no_hidden_states
Added test for LSTM without hidden state initialisation
2023-04-27 16:27:42 +03:00
Alexander Smorkalov
af1c63c0a0
Merge pull request #23138 from AleksandrPanov:aruco_fix_matchImagePoints
fix charuco matchImagePoints
2023-04-27 13:55:46 +03:00
Alex
4ba06c3ed0 fix charuco matchImagePoints 2023-04-27 12:05:09 +03:00
Alexander Alekhin
46e2b67ecb Merge pull request #23502 from seanm:sprintf3 2023-04-26 19:40:14 +00:00
Sean McBride
58e4a880a2 Deprecated convertTypeStr and made new variant that also takes the buffer size
This allows removing the unsafe sprintf.
2023-04-26 09:48:15 -04:00
Abduragim Shtanchaev
3b1ee0549b added test for lstm without hidden
states initialization
2023-04-25 16:01:13 +03:00
cudawarped
871f931e95 VideoCapture: apply bitstream filter to all h264/5 raw streams 2023-04-25 13:52:28 +03:00
Alexander Smorkalov
e3e1f704a4
Merge pull request #23528 from WanliZhong:issue23278
DNN/CUDA: make 'abcd op 1b11' broadcast eltwise operator support cuda
2023-04-24 19:31:55 +03:00
Giles Payne
38e35d5137 Fix ocl::device::isIntel implementation 2023-04-24 22:01:53 +09:00
Dmitry Kurtaev
aa57833ad5
Merge pull request #23409 from dkurt:dnn_tflite_quant
Import and inference INT8 quantized TFLite model #23409

### Pull Request Readiness Checklist

* Support quantized TFLite models
* Enable fused activations (FP32, INT8)

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1048

![res](https://user-images.githubusercontent.com/25801568/231433201-566b4bd6-ccff-462c-9e74-adbdcdf3648b.png)

on the image, green boxes are from TFLite and red boxes from OpenCV

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-24 13:44:10 +03:00
Abduragim Shtanchaev
e4e774d42b
Merge pull request #23475 from Abdurrahheem:lstm_fix_initialization
Fix ONNX parser for single-layer LSTM hidden and cell states #23475

### Fix ONNX parser for single-layer LSTM hidden and cell states

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake


This PR addresses #21118 [issue](https://github.com/opencv/opencv/issues/21118). The problem is that the ONNX parser is unable to read the hidden state and cell state for single-layer LSTMs. This PR fixes the issue by updating the parser to correctly read hidden and cell states.
2023-04-24 13:39:41 +03:00
Alexander Smorkalov
a4a9f56c8b
Merge pull request #23513 from komakai:fix_unrecognized_selector
Fix "unrecognized selector" issue in Objective-C/Swift bindings
2023-04-24 11:29:41 +03:00
wanli
e4360294c5 make 'abcd op 1b11' broadcast support cuda 2023-04-23 17:46:50 +08:00
Dmitry Matveev
1d02146810 Bump supported ONNX RT version to 1.14.1
- Existing tests pass with the ONNX models mentioned in tests.
2023-04-22 20:15:40 +00:00
Alexander Alekhin
9ab0ff6cf2 Merge pull request #23511 from zihaomu:issue_23465 2023-04-22 04:01:26 +00:00
Zihao Mu
601778e0e6
Merge pull request #22750 from zihaomu:improve_blobFromImage
DNN: Add New API blobFromImageParam #22750

The purpose of this PR:

1. Add new API `blobFromImageParam` to extend `blobFromImage` API. It can support the different data layout (NCHW or NHWC), and letter_box.
2. ~~`blobFromImage` can output `CV_16F`~~

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-04-21 19:10:17 +03:00
Alexander Smorkalov
e4a29d93fe Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-04-21 10:55:04 +03:00
zihaomu
54e1a8709d fix the bug, disable the fast1x1 when padding is not 0. 2023-04-21 10:55:07 +08:00
Alexander Smorkalov
4c06a721ef
Merge pull request #23503 from seanm:issue13729
Fixed undefined left shifting of negative number
2023-04-20 12:10:04 +03:00
Alexander Smorkalov
3113b49159
Merge pull request #23495 from smeng9:4.x
Fix aruco module CORNER_REFINE_CONTOUR parameter gets skipped
2023-04-20 12:02:43 +03:00
Yuantao Feng
3c1fcd5deb
Merge pull request #23401 from fengyuentau:fix_cann_layer_support
dnn: Support more operators in CANN backend #23401

This PR adds the support of following layers:

- [x] Sub
- [x] PRelu
- [x] DeConv
- [x] Also warn users if backend is switched back to default if some of the layers are not supported.
- [ ] [Dropped] LSTM: some hacks (adding layers) were introduced which makes it even harder to build the graph for CANN backend.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-20 10:18:35 +03:00
Abduragim Shtanchaev
b3a2444bcf
Merge pull request #23501 from Abdurrahheem:additional_lstm_tests
Added LSTM and GRU tests for various batch and input length sizes #23501

Added tests with various sequence length and batch sizes
Test data: https://github.com/opencv/opencv_extra/pull/1057

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-20 10:11:33 +03:00
Giles Payne
cfa5a270d3 Refactor Mat Converters and Mat QuickLook functionality to avoid "unrecognized selector" error 2023-04-18 21:09:55 +09:00
Milan van Wouden
a7c6fedebd
Fix typos in aruco_detector.hpp
"corresponging" -> "corresponding"
"Refind" -> "Refine"
2023-04-18 14:00:21 +02:00
Alexander Smorkalov
b68aa12572
Merge pull request #23375 from mshabunin:fix-v4l-verify
cmake: fix V4L config verification conflict with OBSENSOR
2023-04-18 13:05:04 +03:00
Sean McBride
47bea69322
Merge pull request #23055 from seanm:sprintf2
* Replaced most remaining sprintf with snprintf
* Deprecated encodeFormat and introduced new method that takes the buffer length
* Also increased buffer size at call sites to be a little bigger, in case int is 64 bit
2023-04-18 09:22:59 +03:00
Sean McBride
aa2fabcba5 Fixed undefined left shifting of negative number
Added explicit cast to unsigned before doing the left shift.

This was caught by UBSan which reported things like:

drawing.cpp:361:22: runtime error: left shift of negative value -26214
drawing.cpp:383:22: runtime error: left shift of negative value -78642
2023-04-17 15:39:37 -04:00
keith siilats
8512deb3cc
Merge pull request #23436 from siilats:patch-2
Fix python bindings for setCharucoParameters #23436

setCharucoParameters fails in python
Fixes: https://github.com/opencv/opencv/issues/23440

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-17 13:02:27 +03:00
smeng9
a788cc526b
Fix skipped corner refinment branching logic 2023-04-15 20:48:05 +08:00
Alexander Smorkalov
aa17f881b1
Merge pull request #23482 from zihaomu:onnx_opset13_split
DNN: support the split node of onnx opset >= 13
2023-04-14 11:59:57 +03:00
fengyuentau
4f99e5ab37 allow null constant_value in Pad and ignore it when loading 2023-04-14 16:50:16 +08:00
fengyuentau
88cacd35c5 support broadcast on axis > 1 for Expand 2023-04-14 15:52:27 +08:00
Gaotianhong
f1dbc7d724 fix warning in pointPolygonTest 2023-04-13 13:13:27 +08:00
thewoz
097891e311
Merge pull request #23394 from thewoz:Cocoa-Scroll-Wheel
Add scrollWheel to Cocoa #23394

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-04-12 10:32:46 +03:00
Alexander Smorkalov
1af084cb65
Merge pull request #23477 from TolyaTalamanov:at/handle-multimeta-giebackend
[G-API] Handle meta from multiple inputs in IE backend
2023-04-12 10:17:59 +03:00
Alexander Smorkalov
136121f6ee
Merge pull request #22660 from zhouzq-thu:4.x
Fix objectness is not assigned in dnn::region_layer
2023-04-12 09:34:58 +03:00
TolyaTalamanov
66abbf4122 Compilation fix 2023-04-11 10:33:42 +00:00
TolyaTalamanov
0f984ea0f0 Handle const inputs descs in giebackend 2023-04-11 10:25:52 +00:00
Alexander Smorkalov
3f02c9d5b9
Merge pull request #23310 from hanliutong:fix_hal_compatibility
Fix HAL compatibility layer
2023-04-11 12:43:54 +03:00
Yuantao Feng
4f77434da1
Merge pull request #23476 from fengyuentau:add_note_for_yunet
Add notes for the output format of FaceDetectorYN.detect()

Resolves https://github.com/opencv/opencv/pull/23020#issuecomment-1499010015

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-11 12:39:21 +03:00
zihaomu
51281f8d69 support the split node of onnx opset >= 13 2023-04-11 16:18:50 +08:00
Kumataro
d2dbaa4cd1
Merge pull request #23433 from Kumataro:4.x-fix23416
imgcodecs: tiff: Support to encode for CV_32S with compression params

Fix https://github.com/opencv/opencv/issues/23416

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-04-11 10:50:47 +03:00
Alexander Alekhin
f9ce3f4b91 Merge pull request #23469 from gottagofaster236:use_nv12_for_obs_camera 2023-04-10 13:39:15 +00:00
Alexander Alekhin
daf9de7463 Merge pull request #23383 from mshabunin:rvv-scalable-gcc 2023-04-10 13:35:43 +00:00
TolyaTalamanov
8a95f4f0e6 Handle meta for multiple infer inputs 2023-04-10 09:54:26 +00:00
gottagofaster236
d30830d0a6 Use NV12 instead of YUY2 for OBS Virtual Camera. 2023-04-09 01:56:03 +02:00
Alexander Smorkalov
f5a92cb43f
Merge pull request #22889 from D-Alex:patch-1
core: improve doc for setNumThreads
2023-04-07 16:37:40 +03:00
Alexander Smorkalov
3bcc3e70f1 Extended setNumThreads documentation according to code review. 2023-04-07 13:56:57 +03:00
eplankin
fd8b346c3e
Merge pull request #23443 from eplankin:3.4
* Update IPPICV binaries (20230330)

* Revert "core(IPP): disable some ippsMagnitude_32f calls"

This reverts commit 8069a6b4f8.

* Reverted changes in norm() and count_non_zero()
2023-04-07 09:14:42 +00:00
Alexander Smorkalov
ce01123db2
Merge pull request #23020 from Wwupup:yunetv2
upgrade FaceDetectorYN to v2
2023-04-06 15:47:19 +03:00
Yuantao Feng
3a83a35ab0
Merge pull request #23296 from fengyuentau:fix_identifying_constant
Fix identifying initializers in ONNX graph simplification #23296

Fixes https://github.com/opencv/opencv/issues/23295

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-06 15:35:31 +03:00
tantei3
8336a96cb9
Merge pull request #23446 from tantei3:bmp_fix
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1050

For 32 bits per pixel with 3 or 4 channel destination images, apply scale factor and mask to parse BMP files correctly

closes #23445 

### Pull Request Readiness Checklist
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-04-06 14:34:36 +03:00
Maksim Shabunin
b12c14514a RISC-V: allow building scalable RVV support with GCC, LLVM 16 support 2023-04-05 14:18:58 +03:00
gottagofaster236
b4e3359448 Fix OBS Virtual Camera capture. 2023-04-05 08:04:35 +02:00
Alexander Smorkalov
2b32eee3f4
Merge pull request #23451 from Zero2key:4.x
add opencv.js imread function can use OffscreenCanvas
2023-04-04 11:05:53 +03:00
Alexander Smorkalov
51f5ee6f19
Merge pull request #23448 from dmatveev:dm/gapi_fix_standalone_47
G-API: Fix compilation error in Standalone mode
2023-04-03 14:21:31 +03:00
Alexander Smorkalov
66a5ecb7ec
Merge pull request #23350 from spikethehobbitmage:4.x
Fix reference counting errors in registerNewType
2023-04-03 14:08:32 +03:00
Zero2key
4e050e85ad
add opencv.js imread function can use OffscreenCanvas 2023-04-03 10:33:20 +08:00
Dmitry Matveev
3871984028 G-API: Fix compilation error in Standalone mode
- Point3f was added to type traits but was missing in the "own" package; fixed.
2023-04-02 17:52:53 +03:00
Alexander Smorkalov
20eee64426
Merge pull request #23390 from just-gull:bugfix.21401.fix-macos-crash-when-keypress-does-nothing
check keydown event characters length on macos
2023-04-02 12:29:55 +03:00
Alexander Smorkalov
d8c80ff5a4
Merge pull request #23419 from dkurt:onnx_fixes
Several fixes for ONNX importer: Expand, Gather
2023-04-02 11:40:56 +03:00
Alexander Smorkalov
3cf367c9c4
Merge pull request #23271 from stefan523:aruco_testcase_fixes
Aruco/Charuco test case fixes for floating point for loops
2023-03-30 11:22:14 +03:00
Alex
c643af0b85 fix test 2023-03-29 15:29:56 +03:00
Dmitry Kurtaev
5e1d33329b Several fixes for ONNX importer: Expand, Gather 2023-03-27 22:15:26 +03:00
HAN Liutong
a809ae4e88 Fix HAL compatibility layer and modify use cases. 2023-03-27 21:30:47 +08:00
Kumataro
1c6c3dfa8d remove tail whitespace 2023-03-26 18:33:54 +09:00
Kumataro
83a49b4f6a imgcodecs: update documentation for imwrite() to support images formats. 2023-03-26 09:03:16 +09:00
Alexander Smorkalov
352f92e437
Merge pull request #23402 from LaurentBerger:I23400
Typo in enum cv::QuatEnum::EulerAnglesType
2023-03-24 18:11:48 +03:00
Alexander Smorkalov
f5fd3e7d65
Merge pull request #23367 from LaurentBerger:msmf_doc
Note for MSMF in doc
2023-03-24 17:16:52 +03:00
unknown
ee302b063f Typo in enum cv::QuatEnum::EulerAnglesType 2023-03-24 14:03:14 +01:00
Alexander Smorkalov
d7dd014a6e
Merge pull request #23399 from AleksandrPanov:aruco_fix_board
Fix create aruco Board in Python
2023-03-24 15:38:53 +03:00
Alexander Smorkalov
b56a52c49b
Merge pull request #22471 from anna-khakimova:ak/fix_resize4lpi_tests
Increasing tolerance for Preproc4lpiTest set on ARM
2023-03-24 15:31:48 +03:00
Anna Khakimova
0bb84096a2 Fix tolerance for Preproc4lpiTest set 2023-03-24 14:20:22 +03:00
Alexander Smorkalov
36a03dbdbf
Merge pull request #23307 from alalek:simd_comparison_fix_misused_64f_guard
core(simd): 64-bit integer EQ/NE without misused 64F guard
2023-03-24 12:46:18 +03:00
Alex
02bdc10062 fix assert, add test 2023-03-24 11:52:05 +03:00
Alexander Smorkalov
d3cc507380 Added reference to Media Foundation. 2023-03-23 16:58:22 +03:00
Alexander Smorkalov
1af790ecc3
Merge pull request #23388 from simonlynen:patch-2
Make LineSegmentDetector deterministic by using stable_sort
2023-03-23 16:18:29 +03:00
Maksym Ivashechkin
67a3d35b4e
Merge pull request #22363 from ivashmak:multiview-calib
Add multiview calibration [GSOC 2022]

### Pull Request Readiness Checklist

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

The usage tutorial is on Google Docs following this link: https://docs.google.com/document/d/1k6YpD0tpSVqnVnvU2nzE34K3cp_Po6mLWqXV06CUHwQ/edit?usp=sharing
2023-03-23 15:42:41 +03:00
Alexander Smorkalov
8c64adb000
Merge pull request #23019 from tkram01:sampleIdxFix
Fix for using sampleIdx to limit training data
2023-03-22 11:59:34 +03:00
Sergey Petrenko
6ffe686ba8 check keydown event characters length before returning the pressed character code 2023-03-22 10:24:22 +03:00
tkram01
ea7efd57d8 Fix for using sampleIdx to limit training data 2023-03-22 09:50:58 +03:00
Christian Henkel
c9e42c5050 two typos 2023-03-22 09:17:41 +03:00
Simon Lynen
6033599c88
Make LineSegmentDetector deterministic by using stable_sort for ordering keypoints prior to region growing
This makes LineSegmentDetector deterministic by using stable_sort for ordering points by norm. Without this change the region growing in LSD is non-determinstic and thus the returned lines are changing between invocations.

This is a replacement for https://github.com/opencv/opencv/pull/23370
2023-03-22 04:12:51 +01:00
Alexander Smorkalov
a4ff46aab7
Merge pull request #23250 from tintou:./tintou/glib-req
highgui: Set hard GLib requirement to >=2.32
2023-03-21 15:22:34 +03:00
Alexander Smorkalov
e6bd4c9f85
Merge pull request #23275 from genciberisha:bug/issue-23249_detected_but_not_decoded_bug
Added QR_Code data flip support, flip and retry after first ECC failure
2023-03-21 15:03:30 +03:00
Alexander Smorkalov
0d082ce6fd
Merge pull request #23344 from anderskiaer:singlefilejs
Add possibility for disabling inlining `wasm` in `opencv.js`
2023-03-21 15:01:52 +03:00
Dmitry Kurtaev
5df6b4a756
Merge pull request #23325 from dkurt:dnn_input_info
Propagate inputs info for ONNX and TFLite models

### Pull Request Readiness Checklist

Needed for generic applications such as benchmarking pipelines. So OpenCV can tell about the default input shapes specified in the models.

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-21 14:50:53 +03:00
ippei.i
a60408cda5
Merge pull request #23300 from ippei-i:CAP_PROP_AUTO_WB-and-CAP_PROP_WHITE_BALANCE_BLUE_U_support_in_CAP_DSHOW
Support VideoCapture CAP_PROP_AUTO_WB and CV_CAP_PROP_WHITE_BALANCE_BLUE_U for DShow

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [OK] I agree to contribute to the project under Apache 2 License.
- [OK] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [OK] The PR is proposed to the proper branch
- [OK] There is a reference to the original bug report and related work
https://github.com/opencv/opencv/issues/19621
https://github.com/opencv/opencv/issues/21408

### Before apply this pull request console output.

before AWB setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 2000
CAP_PROP_AUTO_WB: -1

after AWB disable setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 2000
CAP_PROP_AUTO_WB: -1

after AWB enable setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 2000
CAP_PROP_AUTO_WB: -1

after Manual WB(and Disable AWB) setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 2000
CAP_PROP_AUTO_WB: -1

### After apply this pull request console output.

before AWB setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 2000
CAP_PROP_AUTO_WB: 0

after AWB disable setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 4000
CAP_PROP_AUTO_WB: 0

after AWB enable setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 4000
CAP_PROP_AUTO_WB: 1

after Manual WB(and Disable AWB) setting
CAP_PROP_WHITE_BALANCE_BLUE_U: 2000
CAP_PROP_AUTO_WB: 0

### Test Code
[OpenCvVideoCapTest.zip](https://github.com/opencv/opencv/files/10825399/OpenCvVideoCapTest.zip)
2023-03-21 14:29:24 +03:00
Wwupup
da3a4dcbc1 upgrade FaceDetectorYN to v2 2023-03-21 12:41:02 +08:00
Genci Berisha
a1b4aa5e88
Added QR_Code data flip support, flip and retry after first EEC failure
Added regression test for the flipped images
2023-03-20 14:26:11 +01:00
Labib Asari
c4226f0457
Merge pull request #23196 from labeeb-7z:printOptionInRoiSelector
Added argument to print notice in `roiSelector.cpp`

Related Issue : https://github.com/opencv/opencv/issues/23175

I've added a printNotice argument to `selectROI` (and it's overload) and `selectROIs` functions.
I've also updated the function declarations in `highgui.hpp`.
Tested by building locally.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-20 10:06:57 +03:00
Maksim Shabunin
aef1fc087d cmake: fix V4L config verification conflict with OBSENSOR 2023-03-19 10:58:47 +03:00
unknown
a2e04718ec te for MSMF in doc 2023-03-17 13:36:47 +01:00
Alexander Smorkalov
924a65413a
Merge pull request #23357 from zihaomu:fix_winograd_error_32bit
DNN : fix bug in 32 bit cpu
2023-03-15 11:24:54 +03:00
Vladimir Ponomarev
0c55ed0ca8
Merge pull request #23291 from vovka643:5.x_depricated_backends
Merge with https://github.com/opencv/opencv_contrib/pull/3446
Related issue: https://github.com/opencv/opencv/issues/11810

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-15 09:41:36 +03:00
zihaomu
6bac5453d1 fix bug in 32 bit cpu 2023-03-15 08:24:55 +08:00
Alexander Smorkalov
ccbc784195
Merge pull request #23354 from zihaomu:issue_23351
DNN : fix bug in layer fusion
2023-03-14 17:23:25 +03:00
Vladimir Ponomarev
b204c39815
Merge pull request #23276 from vovka643:flann_corrections
Fixed potential memory leak in flann

Issue #22426

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-14 15:00:44 +03:00
zihaomu
386be97ce2 fix bug in layer fusion 2023-03-14 19:06:06 +08:00
tingbo.liao
7d032de7e8 Fix bugs of test case failure
4 failed tests in open_test_dnn listed below:
* Test_Caffe_layers.Conv_Elu/0, where GetParam() = OCV/CPU
* Test_ONNX_layers.ConvResizePool1d/0, where GetParam() = OCV/CPU
* Test_TensorFlow_layers.tf_reshape_nhwc/0, where GetParam() = OCV/CPU
* Test_Torch_layers.net_inception_block/0, where GetParam() = OCV/CPU

In winofunc_AtXA_8x8_f32 and winofunc_BtXB_8x8_f32
implementation, incorrect input parameters cause tests failure.

Add four new different variables for the last four input parameters of
v_transpose4x4 to fix bugs, and update related comments.

Signed-off-by: tingbo.liao <tingbo.liao@starfivetech.com>
2023-03-14 17:05:19 +08:00
Alexander Smorkalov
de2f7666fb
Merge pull request #23260 from tintou:tintou/gtk-reduce-diff
highgui: Reduce the difference between GTK+2 and GTK+3 version
2023-03-14 09:11:53 +03:00
Spike
95f087cd0b Fix reference counting errors in registerNewType 2023-03-13 23:22:57 -06:00
Alexander Smorkalov
22a52766dc
Merge pull request #23343 from zihaomu:fix_test_onnx_conf
DNN Test ONNX: Fix the logic of the test case
2023-03-13 21:48:41 +03:00
Yuantao Feng
b94e13c8ae
Merge pull request #23319 from fengyuentau:fix_zoo_issue_136
Related issue: https://github.com/opencv/opencv_zoo/issues/136

Features added:

- Support operators with multiple output: ONNX Split.
- Support Slice without steps.

Bugs fixed:

- Wrong settings in ClipByValue (Relu6).
- Wrong calculation of pads in convolution layer (It is wrong generally but only fixed specifically for CANN for now).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-13 21:46:33 +03:00
zihaomu
ee3740af00 move global skip out of if loop, and add opencv_deny_list 2023-03-13 22:16:51 +08:00
Alexander Smorkalov
9f2182abbb
Merge pull request #23261 from vovka643:3.4
Remove separator between trackbars.
2023-03-13 13:51:56 +03:00
anderskiaer
6c763e1ea5 Add possibility for disabling inlining wasm in opencv.js 2023-03-11 21:03:18 +01:00
Zihao Mu
e03e2e7f94
Merge pull request #23192 from zihaomu:clean_up_SIMD_code
### Purpose of this PR:
- Move all dispatch and SIMD code of `convolution layer` into `simd.hpp` file.
- Support Winograd at AVX-only machine.
- Re-name the folder from `fast_conv` to `cpu_kernels`. In the future, we can put other layers of CPU optimization into it, like `GEMM` or `MatMul`.

## Performance Test
Since this patch just focuses on the code style, the performance is expected as the same as before.
Test with the following script: 
`./bin/opencv_perf_dnn '--gtest_filter=*conv*' --gtest_output="xml:../1-0th.xml" --perf_threads=1`

### Test on X86 platform
Min (ms)
|Name of Test|4.x | patch | 4.x vs patch (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|0.98|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|0.95|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.001|0.001|0.97|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.002|0.002|1.04|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.002|0.002|0.94|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.040|0.044|0.93|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.010|0.010|1.00|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.106|0.103|1.03|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.041|0.040|1.03|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.340|0.329|1.03|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.590|0.567|1.04|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.374|1.314|1.05|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.715|3.528|1.05|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.181|1.166|1.01|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.689|2.587|1.04|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.754|4.500|1.06|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|9.612|9.112|1.05|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.000|64.676|1.07|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|20.248|18.451|1.10|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|1.395|1.392|1.00|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|1.990|1.984|1.00|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.393|1.360|1.02|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|1.813|1.744|1.04|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.190|1.191|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.286|1.284|1.00|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.295|2.279|1.01|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.322|1.331|0.99|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|3.784|3.533|1.07|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.838|1.844|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.957|1.959|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|2.596|2.573|1.01|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|4.183|4.083|1.02|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.413|2.406|1.00|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|2.538|2.546|1.00|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.972|2.980|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|3.452|3.464|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|3.082|3.105|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.043|3.919|1.03|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|5.538|5.531|1.00|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.393|3.418|0.99|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|4.325|4.234|1.02|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|6.009|5.908|1.02|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|6.557|6.376|1.03|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|10.114|9.472|1.07|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|10.373|9.879|1.05|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|12.782|11.624|1.10|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|90.931|90.552|1.00|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|6.091|5.818|1.05|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|7.083|6.643|1.07|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.054|5.059|1.00|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|5.005|4.931|1.02|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|4.951|5.065|0.98|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|11.957|11.293|1.06|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.328|5.250|1.01|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|5.544|5.292|1.05|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|6.186|5.893|1.05|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|6.153|5.834|1.05|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|8.154|8.107|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.699|12.256|1.04|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|11.355|11.217|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.062|17.814|1.07|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|6.820|6.531|1.04|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|14.502|13.483|1.08|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|6.270|6.123|1.02|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|13.173|12.451|1.06|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|8.326|7.652|1.09|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.605|16.465|1.07|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|15.675|14.771|1.06|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.420|0.423|0.99|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|6.788|6.491|1.05|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|6.456|6.168|1.05|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.263|0.261|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|7.690|7.398|1.04|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.200|0.202|0.99|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.542|10.464|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|10.876|10.728|1.01|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|7.194|6.768|1.06|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|7.099|6.731|1.05|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.147|0.162|0.91|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|18.558|17.141|1.08|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|7.641|7.219|1.06|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|22.666|20.999|1.08|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|8.523|7.921|1.08|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|8.514|8.109|1.05|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|8.300|7.878|1.05|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|13.403|13.131|1.02|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|8.920|8.357|1.07|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|28.827|27.616|1.04|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|12.895|12.670|1.02|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|14.120|13.078|1.08|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|27.541|27.582|1.00|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|32.367|31.140|1.04|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|14.934|14.910|1.00|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|18.289|18.491|0.99|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|37.857|36.845|1.03|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|37.402|36.566|1.02|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|19.031|19.164|0.99|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.019|19.135|0.99|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.077|19.400|1.03|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.883|21.302|1.03|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|51.288|49.851|1.03|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|27.349|28.359|0.96|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|24.915|25.130|0.99|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|25.488|25.899|0.98|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|27.346|27.390|1.00|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|28.033|28.301|0.99|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|50.216|49.970|1.00|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|29.670|29.513|1.01|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|50.565|49.634|1.02|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|37.900|37.814|1.00|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|41.367|39.742|1.04|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|49.128|50.350|0.98|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|79.643|80.645|0.99|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|41.439|40.895|1.01|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|46.504|46.220|1.01|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|98.086|96.842|1.01|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|102.447|97.299|1.05|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|145.047|144.996|1.00|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|206.104|195.543|1.05|


### Test on M1(ARM) platform
|Name of Test|4.x|patch|4.x vs patch (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|0.97|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|0.94|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.002|0.002|0.92|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.003|0.003|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.003|0.003|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.031|0.031|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.009|0.009|1.00|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.066|0.066|1.01|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.102|0.102|1.00|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.328|0.328|1.00|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.693|0.747|0.93|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.268|1.266|1.00|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.530|3.581|0.99|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.186|1.188|1.00|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.682|2.683|1.00|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.490|4.501|1.00|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|8.914|8.938|1.00|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.819|69.876|1.00|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|24.058|22.420|1.07|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|2.240|2.236|1.00|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|3.132|3.136|1.00|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.920|1.919|1.00|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.343|2.346|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.234|1.116|1.11|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.109|1.121|0.99|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|3.197|3.084|1.04|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.123|1.148|0.98|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|4.836|5.061|0.96|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.535|1.463|1.05|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.756|1.584|1.11|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|1.821|1.820|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|7.049|6.672|1.06|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.967|1.922|1.02|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|1.943|1.977|0.98|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.464|2.310|1.07|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|2.860|2.904|0.98|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|2.428|2.483|0.98|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|2.955|2.983|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|4.328|4.484|0.97|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.712|2.778|0.98|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|3.205|3.331|0.96|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|4.193|4.412|0.95|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|5.026|4.565|1.10|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|14.490|14.213|1.02|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|14.886|14.003|1.06|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|15.923|15.184|1.05|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|45.136|41.696|1.08|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.995|4.631|1.08|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.402|6.261|1.02|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|4.478|3.965|1.13|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.908|3.978|0.98|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|4.176|4.206|0.99|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|21.509|21.136|1.02|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|4.426|4.082|1.08|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|4.098|4.289|0.96|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|4.646|5.105|0.91|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|4.746|4.724|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|5.614|5.779|0.97|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|21.909|20.718|1.06|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|8.256|8.290|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|25.196|23.267|1.08|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|5.721|5.172|1.11|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|20.066|18.322|1.10|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|4.448|4.542|0.98|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.193|19.013|1.01|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|6.009|5.964|1.01|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|20.169|20.009|1.01|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|22.584|23.423|0.96|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.372|0.504|0.74|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|5.426|5.456|0.99|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|4.945|5.221|0.95|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.210|0.261|0.81|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|5.720|5.997|0.95|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.149|0.161|0.93|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|7.154|7.225|0.99|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|7.184|7.223|0.99|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|5.324|5.343|1.00|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|5.114|5.238|0.98|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.111|0.121|0.92|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|25.907|26.804|0.97|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|5.695|5.654|1.01|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|27.435|27.566|1.00|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|6.944|6.164|1.13|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|7.180|6.717|1.07|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|6.817|6.050|1.13|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|9.225|8.660|1.07|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|7.496|6.625|1.13|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|35.520|36.056|0.99|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|9.990|9.702|1.03|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|10.517|10.746|0.98|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|36.702|36.731|1.00|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|41.035|38.280|1.07|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.981|10.573|1.04|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|12.863|12.384|1.04|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|50.437|54.088|0.93|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|50.650|50.635|1.00|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|14.696|14.606|1.01|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|16.201|15.426|1.05|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|16.061|14.292|1.12|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|17.743|18.250|0.97|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|77.909|78.165|1.00|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|21.579|21.879|0.99|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|20.424|19.589|1.04|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.389|19.461|1.00|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.319|20.358|1.05|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|22.609|21.826|1.04|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|25.497|25.789|0.99|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|21.966|22.108|0.99|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|35.883|33.470|1.07|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|31.041|29.314|1.06|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|29.922|28.145|1.06|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|31.624|31.148|1.02|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|38.564|39.164|0.98|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|31.502|30.269|1.04|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|34.248|34.589|0.99|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|130.211|134.120|0.97|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|127.490|132.874|0.96|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|199.834|200.081|1.00|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|247.346|247.523|1.00|


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake


```
force_builders=Linux AVX2,Custom Win
build_image:Custom Win=msvs2019
CPU_BASELINE:Custom Win=AVX512_SKX
```
2023-03-10 11:59:49 +03:00
Alexey Shtern
c6e5f60525
Merge pull request #23301 from shtern:fix_quaternion
Fixed strict type in slerp and spline; Fixed nlerp usage condition

Fixes #23293

The PR is fixing the issue described in [Issue #23293 ](https://github.com/opencv/opencv/issues/23293)

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
2023-03-10 11:37:43 +03:00
Alexander Smorkalov
29cc675375
Merge pull request #23268 from VadimLevin:dev/vlevin/bindings-io-arg-modifiers-fix
fix: remove extra '/O' modifier for '/IO' arguments
2023-03-10 11:05:03 +03:00
Bhavit Patel
7ea6b356c7
Merge pull request #23305 from bhavitp:fix/calib3d/undistortion_grid
Resolves https://github.com/opencv/opencv/issues/23304

Fixes the incorrect pixel grid
Switches type to double to avoid precision loss as all callers use doubles

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
2023-03-10 09:50:36 +03:00
Vincent Rabaud
8ad8ec679f
Merge pull request #22441 from vrabaud:hls_while
In case of huge (and probably invalid) input, make sure we do not
rely only on the while loops for truncation.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
2023-03-07 15:05:38 +03:00
Alexander Alekhin
0052d46b8e Merge pull request #23237 from hzcyf:feature/orbbec_femto_mega_support 2023-03-01 07:13:22 +00:00
Corentin Noël
a035608100 highgui: Reduce the difference between GTK+2 and GTK+3 version
Make the GTK+3 API the default one by wrapping the missing GTK+2 functions in defines
Make sure to always guard with GTK_VERSION2 or GTK_VERSION3 to allow future addition
of Gtk4
2023-02-28 00:48:39 +01:00
Alexander Alekhin
fe59a5695f core(simd): 64-bit integer EQ/NE without misused 64F guard 2023-02-27 19:51:55 +00:00
Alexander Alekhin
9eb5e39ff3 dnn(tflite): fix wrong axis normalization 2023-02-21 21:20:37 +00:00
Alexander Alekhin
5a227352b4 Merge pull request #23274 from alalek:dnn_flatbuffers_builtin 2023-02-21 18:42:49 +00:00
Alexander Alekhin
bdff0949bb dnn(tflite): add 3rdparty flatbuffers with pre-generated schema 2023-02-21 16:06:19 +00:00
Vincent Rabaud
f7ce715596 Fix signed integer overflow.
The overflow happens for INT_MAX so the code just needs to be moved down.
2023-02-20 23:52:22 +01:00
Alexander Alekhin
4262127854 Merge pull request #23246 from mshabunin:rvv07-support 2023-02-20 18:06:30 +00:00
Vadim Pisarevsky
ca48e217f1
fixed another SIFT constructor (#23272) 2023-02-18 00:07:45 +03:00
Vadim Pisarevsky
f48939c2d7
temporarily set "enable_precise_upscale=false" by default to avoid sporadic failures in regression tests (#23270) 2023-02-17 18:57:38 +03:00
Stefan Becker
39e2ebbde4 Aruco/Charuco test case fixes for floating point for loops 2023-02-17 16:45:18 +01:00
Maksim Shabunin
903ec0ec60 RISC-V: support RVV 0.7 in mainline RVV intrinsics 2023-02-17 18:17:11 +03:00
Zihao Mu
20dac7ea48
Merge pull request #23255 from zihaomu:fused_cuda_naryeltwise
DNN: fuse conv+naryEletwise on CUDA backend.
2023-02-17 10:18:13 +00:00
Vadim Levin
642942a72f fix: remove extra '/O' modifier for '/IO' arguments 2023-02-17 13:07:28 +03:00
Vaclav Vavra
923dbcc58f
different interpolation by double image (#23124)
* different interpolation by double image

* fixing scaling mapping

* fixing a test

* added an option to enable previous interpolation

* added doxygen entries for the new parameter

* ASSERT_TRUE -> ASSERT_EQ

* changed log message when using old upscale mode
2023-02-17 10:35:54 +03:00
Vladimir Ponomarev
2ab7b7c09e
Remove separator between trackbars.
Remove separator between 2 or more trackbars. This separator has zero thickness and creates bags in toolbar.
2023-02-16 15:18:30 +03:00
Anatoliy Talamanov
6c235c8edb
Merge pull request #23211 from TolyaTalamanov:at/pipeline-modeling-tool-perf-alignment
[G-API] Pipeline modeling tool: Refactor calculating performance statistics

* Add warmup execution

* Align perf metrics

* Add busy wait mode for source

* Small fix for late frames

* pl_fn to src_fn

* Change show statistics

* Correct warm-up iteration

* Properly calculate drop frames

* Enable frame dropping for streaming mode

* Enable frame dropping for streaming mode

* Fix comments to review

* Fix typos

* Cosmetic
2023-02-15 14:04:14 +03:00
Lilit Grigoryan
a87b9fb4b6 Fix focal length estimation from homography matrix 2023-02-14 21:51:09 +03:00
Alexander Alekhin
58d8a2702a Merge pull request #23243 from WanliZhong:accelerate_palm_det 2023-02-14 16:25:02 +00:00
Corentin Noël
f1f14ce403 highgui: Set hard GLib requirement to >=2.32
This version has been released 10 years ago.
2023-02-14 13:28:42 +01:00
Dmitry Kurtaev
76350cd30f
Merge pull request #23161 from dkurt:dnn_tflite
TFLite models importer

* initial commit

* Refactor TFLiteImporter

* Better FlatBuffers detection

* Add permute before 4D->3D reshape

* Track layers layout

* TFLite Convolution2DTransposeBias layer

* Skip TFLite tests without FlatBuffers

* Fix check of FlatBuffers in tests. Add readNetFromTFLite from buffer

* TFLite Max Unpooling test

* Add skip for TFLite unpooling test

* Revert DW convolution workaround

* Fix ObjC bindings

* Better errors handling

* Regenerate TFLite schema using flatc

* dnn(tflite): more checks, better logging

* Checks for unimplemented fusion. Fix tests
2023-02-13 14:00:20 +00:00
Alexander Alekhin
47293f28cf Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2023-02-11 18:35:00 +00:00
hzcyf
325fe7e663 add support for Orbbec Femto Mega RGB-D camera 2023-02-11 16:22:35 +08:00
Yannis Guyon
56102737d7
Merge pull request #23131 from y-guyon:align_ptr_intrin_sse
Fix misaligned-pointer-use in intrin_sse.hpp

* Fix misaligned-pointer-use in intrin_sse.hpp

* Use _mm_loadu_si32() instead of memcpy()

* Use CV_DECL_ALIGNED instead of _mm_loadu_si32()
2023-02-10 22:46:21 +00:00
Yuantao Feng
c2b7c1f13b
Merge pull request #23219 from fengyuentau:add_gelu
Add GELU layer for vision transformers

* add gelu and gelu approximation

* drop setKernelParams
2023-02-10 18:03:29 +00:00
wanli
c8f5e228fc release MUL and ADD operator on CUDA 2023-02-10 19:33:59 +08:00
Alexander Alekhin
96a45e842e
Merge pull request #23061 from WanliZhong:gemm_cuda
DNN: make GEMM can be supported with transA and transB in CUDA
2023-02-09 00:06:32 +03:00
Ibai Gorordo
c280cd7290
Merge pull request #23210 from ibaiGorordo:rect_nfa_bugfix
Fix rect_nfa (lsd)

* Fix missing log_gamma in nfa()

Comparing the nfa function with the function in the binomial_nfa repository (https://github.com/rafael-grompone-von-gioi/binomial_nfa/blob/main/C99/log_binomial_nfa.c#L152), the first log_gamma call is missing.

* Fix rect_nfa pixel index

* Replace std::rotate

* Rename tmp to v_tmp

* Replace auto and std::min_element

* Change slope equality check to int

* Fix left limit check
2023-02-08 17:33:06 +00:00
Alexander Alekhin
44290af516 Merge pull request #23224 from VadimLevin:dev/vlevin/cxx-named-arguments 2023-02-08 17:31:30 +00:00
Alexander Alekhin
649841e6bf Merge pull request #23225 from mshabunin:fix-clang-warnings 2023-02-08 17:28:07 +00:00
Maksim Shabunin
e4acd74e87 Fix some clang 14 warnings 2023-02-07 01:19:00 +03:00
Vadim Levin
b07031b594 feat: named arguments handling in Python interface 2023-02-06 22:14:58 +03:00
Alexander Smorkalov
3d635cb4a7 Warning supression fix for XCode 13.1 and newer. Backport #23203 2023-02-06 11:12:05 +03:00
keith siilats
b0aace31ec
Update charuco_detector.cpp
Delete the debug print statements accidentally left in
2023-02-05 19:39:25 -05:00
Tinson Lai
f8f425e34c
Change custom_hal.hpp output location 2023-02-03 18:21:15 +08:00
Rostislav Vasilikhin
23dec329b4
Merge pull request #23150 from savuor:port5_stereo_calib_per_obj
### Changes

* Port of #22519 to 5.x
* Distortion coefficients were not copied properly, fixed
* Minor coding style chages

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-02-02 16:44:28 +03:00
Alexander Smorkalov
c855dcc52f Supressed tones of Wdeprecated-copy that jump out of GTes after XCode update to 13.1 on Mac M1. 2023-02-02 13:54:47 +03:00
whuaegeansea
400572b19f Fix bug 2023-02-01 11:25:31 +08:00
wanli
4718a4bf81 make GEMM can be supported with transA and transB in CUDA 2023-01-31 15:14:17 +08:00
Maksim Shabunin
9efaa3cce7 RISC-V/RVV 0.7: v_add/v_sub saturation and avoiding 64-bit register in v_check_ 2023-01-30 23:25:53 +03:00
Alexander Smorkalov
29dc07b1f3
Merge pull request #23186 from savuor:warnings_3d
MSVC warnings fixed in 3d module
2023-01-30 10:09:01 +03:00
Alexander Smorkalov
ff8af10cfe
Merge pull request #23168 from genciberisha/bug/issue-22205_and_23105_encodeStructuredAppend_problem
Fix encodeStructuredAppend() resulting in only one QR code problem, and false output data fix.
2023-01-30 09:15:18 +03:00
Alexander Alekhin
3c8e97ff6a 3d(test): change tolerance of Volume/VolumeTestFixture.valid_points 2023-01-30 05:27:02 +00:00
Alexander Alekhin
1d530eb2e2 core(test_math): replace the_rng() => cv::theRNG() 2023-01-29 19:51:18 +00:00
Alexander Alekhin
4500a5369c 3d(test): don't use RNG in SetUp() 2023-01-29 17:14:25 +00:00
Alexander Alekhin
f33598f55e Merge branch 4.x 2023-01-28 17:31:32 +00:00
Alexander Alekhin
cd44aa0bb1 Merge pull request #23162 from zihaomu:issue_23151 2023-01-28 13:00:43 +00:00
Alexander Alekhin
d3ae175bca Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2023-01-28 10:01:23 +00:00
Rostislav Vasilikhin
deaf632881
Merge pull request #23179 from savuor:port34_stddev_calib_fisheye
Backport to 3.4 of the fisheye calibration uncertainty fix

* uncertainties fix

* trailing whitespace

* comment added
2023-01-28 09:56:13 +00:00
Alexander Alekhin
c67d4fc633 Merge pull request #23076 from inayd:22012-bugfixFillPoly 2023-01-28 09:55:02 +00:00
zihaomu
f45a12439a fix depth wise issue. 2023-01-28 11:41:00 +08:00
Rostislav Vasilikhin
285218915c msvc cast warnings 2023-01-27 17:20:12 +01:00
Yuantao Feng
4d918ba40b
Merge pull request #23047 from fengyuentau:layer_norm
dnn: add layer normalization for vision transformers

* add layer norm onnx parser, impl and tests

* add onnx graph simplifier for layer norm expanded

* handle the case when constants are of type Initializer

* add test case for layer norm expanded with initializers

* use CV_Assert & CV_CheckType in place of CV_Assert_N; use forward_fallback for OCL_FP16

* use const ref / ref in parameters of invoker::run; extract inner const if from nested loop; use size_t in place of ull

* template hasBias

* remove trailing whitespace

* use pointer parameter with null check; move normSize division & mean_square division outside of loop; use std::max to ensure positive value before std::sqrt

* refactor implementation, optimize parallel_for

* disable layer norm expanded

* remove the removal of layer norm optional outputs
2023-01-27 16:35:59 +03:00
Yannis Guyon
bf29a4d746 Avoid double-checked locking with TSAN in parallel
Omit the first check of the double-checked locking pattern in
recordException() in parallel.cpp when CV_THREAD_SANITIZER is defined.
This should only slow recordException() down when the thread sanitizer
is used, and avoids the TSAN data race warning.
2023-01-27 13:36:33 +01:00
Rostislav Vasilikhin
8329c09ba8
Merge pull request #23178 from savuor:stddev_calib_fisheye
Fixes #23057

Parameter uncertainty fixed + ground truth test data fixed

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-01-27 09:40:08 +03:00
Genci Berisha
743d4ecf7b generateQR() method data loss fix
Added regression parameterized test for Structure Append mode

final_qr_code clear outside generateQR() method
2023-01-26 23:30:14 +01:00
Alexander Alekhin
52855a39ad Merge pull request #23165 from labeeb-7z:optimizeDistanceTransform 2023-01-25 16:52:46 +00:00
Lilo Huang
cb7fe597a5
Merge pull request #23172 from lilohuang:master
Adding HEVC/H265 FourCC support to MSMF video writer

* Adding HEVC/H265 fourcc to MSMF video writer

Adding HEVC/H265 fourcc to MSMF video writer. I have verified it with my own video input stream, and it works well on my workstation.

* Update video io testing

* Adding macro fence to get rid of compiler error

H265/HEVC encoder is only available in Windows or later. https://learn.microsoft.com/en-us/windows/win32/medfound/h-265---hevc-video-encoder

* Update test_video_io.cpp
2023-01-25 04:49:08 +00:00
Alexander Alekhin
8ffc06ff72 Merge pull request #23173 from tomoaki0705:fix_warning_master 2023-01-23 15:33:16 +00:00
Tomoaki Teshima
186c18668c suppress warning 2023-01-23 22:47:43 +09:00
Rostislav Vasilikhin
4009bca59a
Merge pull request #23025 from savuor:backport3_stddev_calib_fix
Backport of #22992 to 3.4

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-01-23 14:59:43 +03:00
Alexander Alekhin
18cbfa4a4f Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2023-01-23 00:11:12 +00:00
Alexander Alekhin
b71a168937 Merge pull request #23154 from tomoaki0705:handleNonBitExact 2023-01-21 18:14:25 +00:00
Labib Asari
35c17f35be removed redundant code 2023-01-21 00:16:48 +05:30
Alexander Smorkalov
3085fc6345
Merge pull request #23073 from savuor:fix_graphcut_used_edges_dense
USAC fix: GraphCut fails to allocate big dense matrices
2023-01-20 14:55:40 +03:00
Alexander Alekhin
17e860a288 Merge pull request #16189 from mshabunin:enable-two-channels 2023-01-20 08:51:46 +00:00
Tomoaki Teshima
1833b034fe make test tolerate to rounding error 2023-01-19 22:06:52 +09:00
Alexander Alekhin
69020666fe test: reproducible results, enabled 2-channel tests, increased some thresholds 2023-01-19 15:39:33 +03:00
Alexander Alekhin
53144ee0eb perf: drop runtime time adjustment calibration 2023-01-18 22:13:30 +00:00
Alexander Alekhin
a42d879925 Merge branch 4.x 2023-01-18 22:03:42 +00:00
Funatomi Takuya
dbdd357b0a Extend USAC coverage.
Add `estimateSE2(...)`, `estimateSE3(...)`, `estimateSIM2(...)`, `estimateSIM3(...)` for estimating an geometric transformation with rotation and translation (with scaling for SIM) using USAC: as alternative for `estimateAffinePartial2D` and `estimateAffine3D`.

Modified test module.

Remove unused variables.

Remove initializer of unused variable.

Add interfaces to accept UsacParams() and corresponding test codes.

Revise test code.

PartialNd removed

Umeyama rewritten for code quality & speed

comments & minors

rise number of points

fix, and +30% faster!

only one number should be that big

remove USAC code, leave fix only

big number
2023-01-18 02:12:57 +01:00
Rostislav Vasilikhin
f3a03aefad cvIsInf(double) fix + regression test 2023-01-17 23:06:39 +01:00
Vincent Rabaud
44c46e545a Fix compilation with msan 2023-01-17 13:26:59 +01:00
Maksim Shabunin
c1e5c16ff3 Backport C-API cleanup (imgproc) from 5.x 2023-01-16 23:29:50 +03:00
Yuantao Feng
c63d79c5b1
Merge pull request #23095 from fengyuentau:fix_omp_macos
* fix openmp include and link issue on macos

* turn off have_openmp if OpenMP_CXX_INCLUDE_DIRS is empty

* test commit

* use condition HAVE_OPENMP and OpenMP_CXX_LIBRARIES for linking

* remove trailing whitespace

* remove notes

* update conditions

* use OpenMP_CXX_LIBRARIES for linking
2023-01-16 12:44:13 +03:00
Alexander Alekhin
a9d02f096e Merge pull request #23126 from cudawarped:fix_issue_3412 2023-01-13 13:08:27 +00:00
Ihsan Soydemir
6a7d54f550
Merge pull request #23128 from Isydmr:update-fastNlMeansDenoising-documentation
Fix broken paper link for fastNlMeansDenoising

* Fix broken link

* Move citation to `opencv.bib`

* Cite researchgate reference

* Correct citation label

* Use semantic scholar BibTex
2023-01-12 19:54:40 +03:00
Alexander Alekhin
3d5e3a910f Merge pull request #23096 from zihaomu:issue_23074 2023-01-12 00:51:04 +00:00
Xxfore
ef0fcb9238
Merge pull request #22938 from Xxfore:4.x
Use reinterpret instead of c-style casting for GCC

Co-authored-by: Xu Zhang <xu.zhang@hexintek.com>
Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
2023-01-11 14:11:16 +00:00
cudawarped
b5bf756ca0 core: define cuda test size with row/col of 1 2023-01-11 14:52:46 +02:00
zihaomu
840b1d5c94 add depthwise add fuse 2023-01-11 08:42:51 +08:00
Alexander Alekhin
974102bc7f Merge pull request #23120 from alalek:fixup_22246_2 2023-01-10 10:01:17 +00:00
Alexander Alekhin
5bacd8753b build: eliminate GCC9 warning from sift.simd.hpp 2023-01-10 01:38:12 +00:00
Alexander Alekhin
65c2d6a2be Merge pull request #23112 from zihaomu:fix_x86_winograd 2023-01-09 19:37:29 +00:00
Yang Chao
e0aa677388 Open CV_CPU_NEON_DOTPROD on Apple silicon devices 2023-01-09 19:27:35 +08:00
Alexander Alekhin
593a376566 Merge branch 4.x 2023-01-09 11:08:02 +00:00
Alexander Alekhin
36815fe3f3 videoio(test): skip unstable Media.audio test 2023-01-09 10:06:10 +00:00
Christoph Rackwitz
a64b51dd94
Merge pull request #23108 from crackwitz:issue-23107
Usage of imread(): magic number 0, unchecked result

* docs: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()

* samples, apps: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()

* tests: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()

* doc/py_tutorials: check imread() result
2023-01-09 09:55:31 +00:00
zihaomu
82616eec41 fix possible segmentation fault error in winograd on x86 2023-01-09 13:40:04 +08:00
inayd
54449b614b Fix occuring artifacts in fillPoly 2023-01-03 16:29:13 +01:00
Alexander Alekhin
9208dcb07c Merge tag '4.7.0' 2022-12-28 15:23:46 +00:00
Alexander Smorkalov
725e440d27 release: OpenCV 4.7.0 2022-12-28 17:31:52 +03:00
Alexander Panov
121034876d
Merge pull request #22986 from AleksandrPanov:move_contrib_charuco_to_main_objdetect
merge with https://github.com/opencv/opencv_contrib/pull/3394

move Charuco API from contrib to main repo:

- add CharucoDetector:
```
CharucoDetector::detectBoard(InputArray image, InputOutputArrayOfArrays markerCorners, InputOutputArray markerIds, 
                             OutputArray charucoCorners, OutputArray charucoIds) const // detect charucoCorners and/or markerCorners
CharucoDetector::detectDiamonds(InputArray image, InputOutputArrayOfArrays _markerCorners,
                                InputOutputArrayOfArrays _markerIds, OutputArrayOfArrays _diamondCorners,
                                OutputArray _diamondIds) const
```

- add `matchImagePoints()` for `CharucoBoard`
- remove contrib aruco dependencies from interactive-calibration tool
- move almost all aruco tests to objdetect

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2022-12-28 17:28:59 +03:00
Alexander Alekhin
9627ab9462 Merge pull request #23050 from zihaomu:fix_memory 2022-12-28 10:04:25 +00:00
zihaomu
71765858dc fix invalid memory access 2022-12-28 17:16:11 +08:00
Alexander Alekhin
9a2a34f94e dnn(openvino): remove undefined status 2022-12-28 06:55:00 +00:00
Alexander Alekhin
38f7cd7173 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2022-12-27 08:58:28 +00:00
Alexander Alekhin
eab7faf536 Merge tag '3.4.19' 2022-12-27 08:41:49 +00:00
Alexander Alekhin
83391ac59d release: OpenCV 3.4.19 2022-12-27 03:50:12 +00:00
Alexander Alekhin
a8a93a57e7 Merge pull request #23029 from savuor:backport3_fix_fisheye_aspect_ratio 2022-12-27 03:47:01 +00:00
Alexander Alekhin
f637629c5a Merge pull request #23037 from cudawarped:fix_for_cuda_12 2022-12-27 03:43:59 +00:00
Rostislav Vasilikhin
93aa94e71e backported changes
no lambda

whitespace

fixing build Java tests
2022-12-27 00:54:39 +01:00
Alexander Alekhin
86b46a27cf Merge pull request #23039 from alalek:cmake_3.5_fix 2022-12-26 20:31:39 +00:00
Alexander Alekhin
1bc3077890 cmake: VERSION_GREATER_EQUAL is not supported in CMake 3.5.1 2022-12-26 17:41:53 +00:00
Alexander Alekhin
fc27a343e9 Merge pull request #22905 from zihaomu:clean_up_conv3d_1d 2022-12-26 17:39:18 +00:00
cudawarped
692d6168b3 cuda: fix CUDA 12.0 build errors 2022-12-26 15:25:29 +02:00
Alexander Alekhin
de9787a6ac Merge pull request #23036 from asmorkalov:as/blobdetect_range_fix 2022-12-26 12:47:45 +00:00
Alexander Smorkalov
b7292bc899 Fixed blob detector parameters range. 2022-12-26 15:02:24 +03:00
Alexander Alekhin
dbd4a0e5e6 videoio(ffmpeg): update tests with new Windows wrapper 2022-12-26 02:32:11 +00:00
Alexander Alekhin
b42c11de82 pre: OpenCV 4.7.0 (version++) 2022-12-25 17:00:22 +00:00
Alexander Alekhin
a494c75bfe pre: OpenCV 3.4.19 (version++) 2022-12-25 16:59:47 +00:00
Alexander Alekhin
bc8c912c7a Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2022-12-24 13:54:58 +00:00
zihaomu
8e6aae0d7a Add spaces to make links clickable. 2022-12-24 15:26:42 +08:00
Dmitry Kurtaev
8681686d8f
Merge pull request #22957 from dkurt:new_openvino_api
Switch to new OpenVINO API after 2022.1 release

* Pass Layer_Test_Convolution_DLDT.Accuracy/0 test

* Pass test Test_Caffe_layers.Softmax

* Failed 136 tests

* Fix Concat. Failed 120 tests

* Custom nGraph ops. 19 failed tests

* Set and get properties from Core

* Read model from buffer

* Change MaxPooling layer output names. Restore reshape

* Cosmetic changes

* Cosmetic changes

* Override getOutputsInfo

* Fixes for OpenVINO < 2022.1

* Async inference for 2021.4 and less

* Compile model with config

* Fix serialize for 2022.1

* Asynchronous inference with 2022.1

* Handle 1d outputs

* Work with model with dynamic output shape

* Fixes with 1d output for old API

* Control outputs by nGraph function for all OpenVINO versions

* Refer inputs in PrePostProcessor by indices

* Fix cycled dependency between InfEngineNgraphNode and InfEngineNgraphNet.
Add InferRequest callback only for async inference. Do not capture InferRequest object.

* Fix tests thresholds

* Fix HETERO:GPU,CPU plugin issues with unsupported layer
2022-12-23 16:58:41 +00:00
Alexander Smorkalov
9012e6dd9b
Merge pull request #22965 from vrabaud:numpy_fix
Remove references to deprecated NumPy type aliases.
2022-12-23 15:34:02 +03:00
Alexander Smorkalov
4930516652
Merge pull request #22898 from fengyuentau:slice_neg_steps
dnn: support ONNX Slice with negative steps by adding and using cv::flipND
2022-12-23 14:15:06 +03:00
Vincent Rabaud
ad568edd7f Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).

Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2022-12-23 13:53:49 +03:00
Maxim Milashchenko
62b3a20da5
Merge pull request #22930 from MaximMilashchenko:gstreamer_support
Support one-time audio video reading

* stream switching functionality

* audio+video pipeline with switch stream functionality

* audio video sync

* fixed sync

* removed switch swtream functionality

* changed test for gstreamer audio

* fixed error

* fixed error

* fixed issue

* fixed issue

* fixed error

* fixed error

* fixed error
2022-12-23 10:15:22 +00:00
Alexander Alekhin
1f41d06f9a Merge pull request #23008 from mshabunin:fix-yolov4-tiny-hash 2022-12-23 10:14:25 +00:00
Sergei Shutov
1339c7f30c Define the number of dstChannels for Lab, Luv, YCrCb and XYZ conversions 2022-12-23 12:04:30 +02:00
Alexander Smorkalov
734fb18c4d
Merge pull request #23017 from asmorkalov:as/qrcode_valgrind
Valgrind issues fix in QRCode detector.
2022-12-23 12:10:29 +03:00
zihaomu
71c6339af0 remove old convolution branch, and optimize conv3d and conv1d. 2022-12-23 16:50:28 +08:00
fengyuentau
34a0897f90 add cv::flipND; support onnx slice with negative steps via cv::flipND 2022-12-23 16:39:53 +08:00
Alexander Smorkalov
a32100d9ba Valgrind issues fix in QRCode detector. 2022-12-23 10:50:31 +03:00
Alexander Alekhin
b5400902a7
Merge pull request #23002 from alalek:issue_22206
* obj-c: de-duplicate values of nested enums

- prefix with outer class name

* obj-c: handle enum names change in assigned values

* obj-c: switch on 'const_fix'

* obj-c: add NS_SWIFT_NAME
2022-12-22 14:01:21 +00:00
Maksim Shabunin
d35fbe6bfc dnn: updated YOLOv4-tiny model and tests 2022-12-22 15:49:21 +03:00
Alexander Smorkalov
44dfe62af0
Merge pull request #22914 from tozanski:tomoz/ransac-bugfix
Bugfix for solvePnPRansac with SOLVEPNP_ITERATIVE
2022-12-22 11:58:14 +03:00
Alexander Alekhin
4acb267cf4 Merge pull request #23014 from alalek:ffmpeg_default_threads 2022-12-22 07:57:24 +00:00
Alexander Alekhin
8676d19dc3 videoio(ffmpeg): limit number of default threads 2022-12-22 04:45:29 +00:00
Alexander Alekhin
6b4f3e5fab Merge pull request #22993 from alalek:fixup_21738 2022-12-21 19:50:51 +00:00
Vincent Rabaud
b774753922 Fix self converTo.
We still need images[i] = img because it is used below in buildPyramid.
2022-12-21 18:28:26 +01:00
Marco Feuerstein
bc8d494617
Merge pull request #22959 from feuerste:parallel_mertens
Parallelize implementation of HDR MergeMertens.

* Parallelize MergeMertens.

* Added performance tests for HDR.

* Ran clang-format.

* Optimizations.

* Fix data path for Windows.

* Remove compiiation warning on Windows.

* Remove clang-format for existing file.

* Addressing reviewer comments.

* Ensure correct summation order.

* Add test for determinism.

* Move result pyramid into sync struct.

* Reuse sync for first loop as well.

* Use OpenCV's threading primitives.

* Remove cout.
2022-12-21 14:10:59 +00:00
Alexander Smorkalov
1ab259df9a
Merge pull request #23005 from alalek:objdetect_cleanup_aruco_ptr_filestorage
aruco(cleanup): don't use Ptr<FileStorage>
2022-12-21 16:45:14 +03:00
augustinmanecy
0bd54a60e9
Merge pull request #20367 from augustinmanecy:features2d-rw
**Merge with contrib**: https://github.com/opencv/opencv_contrib/pull/3003

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [ ] There is reference to original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2022-12-21 16:03:00 +03:00
Alexander Smorkalov
63b6b24cd0
Merge pull request #22967 from stopmosk:usac-maxiters-bugfix
Fix maxIter parameter in usac findEssentialMat
2022-12-21 15:58:44 +03:00
Alexander Alekhin
c6a15e1835 aruco(cleanup): don't use Ptr<FileStorage> 2022-12-21 10:52:43 +00:00
Alexander Smorkalov
91ac790249
Merge pull request #23001 from alalek:videoio_init_vars
videoio(v4l): initialize variables
2022-12-21 09:56:55 +03:00
Sergei Shutov
3cfe737581 Fix hardcoded maxIters 2022-12-21 09:51:59 +03:00
Yuantao Feng
a2b3acfc6e
dnn: add the CANN backend (#22634)
* cann backend impl v1

* cann backend impl v2: use opencv parsers to build models for cann

* adjust fc according to the new transA and transB

* put cann net in cann backend node and reuse forwardLayer

* use fork() to create a child process and compile cann model

* remove legacy code

* remove debug code

* fall bcak to CPU backend if there is one layer not supoorted by CANN backend

* fix netInput forward
2022-12-21 09:04:41 +03:00
Alexander Alekhin
f4b23de9dd videoio(v4l): initialize variables 2022-12-21 03:28:09 +00:00
Alexander Alekhin
a08c98cdfb Merge pull request #22995 from alalek:dnn_fix_opencl_matmul 2022-12-20 14:52:35 +00:00
Alexander Smorkalov
279e2be56b
Merge pull request #22963 from cudawarped:replace_texture_ref_with_texture_obj
Replace all instances of CUDA texture references with texture objects
2022-12-20 15:07:10 +03:00
Alexander Alekhin
cdbb893b27 dnn: disable OpenCL code path in MatMul processing
- this mode is not supported by 22828
2022-12-20 09:46:48 +00:00
Alexander Alekhin
3f7ec99166 build: eliminate build warnings on Ubuntu 20.04/16.04 2022-12-20 06:46:30 +00:00
Alexander Alekhin
1102b7eff8 dnn: fix gather layer implementation
- support FP16 data
2022-12-20 06:09:34 +00:00
Alexander Alekhin
da43778c1f Merge pull request #22981 from alalek:core_freeze_cache_dir_prefix_4.x 2022-12-19 17:29:57 +00:00
cudawarped
9aa5ab7557 cv::cuda: Replace all instances of texture references/objects with texture objects using the existing updated cv::cudev::Texture class.
Fixes bugs in cv::cuda::demosaicing, cv::cuda::resize and cv::cuda::HoughSegmentDetector.
2022-12-19 19:28:15 +02:00
Vincent Rabaud
7463e9b8bb Even faster CV_PAUSE on SkyLake and above.
No need to loop as RDTSC is 3/4 times faster than _mm_pause.
2022-12-19 14:15:34 +01:00
Alexander Smorkalov
9f201a8ebe
Merge pull request #22979 from alalek:fix_videio_test_limit_threads
videoio(test): reduce number of test threads
2022-12-19 10:01:43 +03:00
Alexander Alekhin
91998d6424
Merge pull request #22935 from alalek:gapi_error
G-API: replace GAPI_Assert() with 'false' and '0' to GAPI_Error()

* gapi: GAPI_Error() macro

* gapi: replace GAPI_Assert() with 'false' and '0' to GAPI_Error()

* build: eliminate 'unreachable code' after CV_Error() (MSVC 2015)

* build: eliminate 'unreachable code' warning for MSVS 2015/2017

- observed in constructors stubs with throwing exception
2022-12-19 06:05:15 +00:00
Alexander Alekhin
420db56ffd Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2022-12-18 02:17:17 +00:00
Alexander Alekhin
4824ce300f core: freeze cache directory prefix - "4.x" 2022-12-18 00:24:52 +00:00
Alexander Alekhin
cdaf4c7321 videoio(test): reduce number of test threads 2022-12-18 00:02:07 +00:00
Alexander Alekhin
eace6adb6d Merge pull request #22934 from alalek:fix_filestorage_binding 2022-12-17 03:28:13 +00:00
Alexander Panov
b4b35cff15
Merge pull request #22368 from AleksandrPanov:move_contrib_aruco_to_main_objdetect
Megre together with https://github.com/opencv/opencv_contrib/pull/3325

1. Move aruco_detector, aruco_board, aruco_dictionary, aruco_utils to objdetect
1.1 add virtual Board::draw(), virtual ~Board()
1.2 move `testCharucoCornersCollinear` to Board classes (and rename to `checkCharucoCornersCollinear`)
1.3 add wrappers to keep the old api working
3. Reduce inludes
4. Fix java tests (add objdetect import)
5. Refactoring

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

```
**WIP**
force_builders=linux,win64,docs,Linux x64 Debug,Custom
Xbuild_contrib:Docs=OFF

build_image:Custom=ubuntu:22.04
build_worker:Custom=linux-1
```
2022-12-16 12:28:47 +03:00
hzc
47fb79bd8c
Merge pull request #22936 from hzcyf:orbbec_new_cam_support
videoio: add Orbbec Gemini 2 and Astra 2 camera support

### Test Result

| OS | Compiler | Camera | Result |
|-----|-----------|---------|--------|
|Windows11| (VS2022)MSVC17.3|Orbbec Gemini 2|Pass|
|Windows11| (VS2022)MSVC17.3|Orbbec Astra 2|Pass|
|Ubuntu22.04|GCC9.2|Orbbec Gemini 2|Pass|
|Ubuntu22.04|GCC9.2|Orbbec Astra 2|Pass|

### Pull Request Readiness Checklist
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] The feature is well documented and sample code can be built with the project CMake
2022-12-16 12:23:12 +03:00
Alexander Alekhin
6e3700593f compatibility: keep Ptr<FileStorage> stubs till OpenCV 5.0 2022-12-16 00:47:44 +00:00
Alexander Alekhin
6a8c5a1d27 python: resolve Ptr<FileStorage> requirement issue 2022-12-16 00:47:44 +00:00
Vincent Rabaud
b7b08fa0c3 Fix slower CV_PAUSE on SkyLake and above.
This is fixing https://github.com/opencv/opencv/issues/22852
2022-12-15 14:18:57 +01:00
Alexander Smorkalov
ac6fb17784
Merge pull request #22828 from WanliZhong:improve_matmul
DNN: make MatMul support 3D or 4D with broadcast
2022-12-15 13:36:22 +03:00
Alexander Smorkalov
3f22f4727c
Merge pull request #22919 from asmorkalov:as/gstreamer_read_timeout
Address https://github.com/opencv/opencv/issues/22868
Used the same defaults as it's done for FFmpeg

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake


```
force_builders=Custom
build_image:Custom=gstreamer:16.04
buildworker:Custom=linux-1
```
2022-12-15 12:53:22 +03:00
Alexander Smorkalov
0153e796cc
Merge pull request #22891 from AleksandrPanov:qr_add_alignment
Use QR code alignment markers
2022-12-15 09:39:58 +03:00
zoom
4891818114 make MatMul support 3D or 4D with broadcast 2022-12-15 10:36:08 +08:00
Alexander Alekhin
db4a557187 Merge pull request #22951 from zihaomu:update_nanotrack_comment 2022-12-14 21:21:49 +00:00
Alexander Alekhin
04c3a534af Merge pull request #22958 from asmorkalov:as/ffmpeg_missing_include 2022-12-14 21:16:07 +00:00
AleksandrPanov
a32143003d add alignment detect 2022-12-14 23:56:57 +03:00
Sergei Shutov
8bd17163c7
Merge pull request #22939 from stopmosk:21826-python-bindings-for-videocapturewaitany
Add Python bindings for VideoCapture::waitAny #21826

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2022-12-14 22:15:02 +03:00
Maksim Shabunin
8a62b03761
Merge pull request #22754 from mshabunin:c-cleanup
C-API cleanup for OpenCV 5.x (imgproc, highgui)

* imgproc: C-API cleanup

* imgproc: increase cvtColor test diff threshold

* imgproc: C-API cleanup pt.2

* imgproc: C-API cleanup pt.3

* imgproc: C-API cleanup pt.4

* imgproc: C-API cleanup pt.5

* imgproc: C-API cleanup pt.5

* imgproc: C-API cleanup pt.6

* highgui: C-API cleanup

* highgui: C-API cleanup pt.2

* highgui: C-API cleanup pt.3

* highgui: C-API cleanup pt.3

* imgproc: C-API cleanup pt.7

* fixup! highgui: C-API cleanup pt.3

* fixup! imgproc: C-API cleanup pt.6

* imgproc: C-API cleanup pt.8

* imgproc: C-API cleanup pt.9

* fixup! imgproc: C-API cleanup pt.9

* fixup! imgproc: C-API cleanup pt.9

* fixup! imgproc: C-API cleanup pt.9

* fixup! imgproc: C-API cleanup pt.9

* fixup! imgproc: C-API cleanup pt.9

* fixup! imgproc: C-API cleanup pt.9
2022-12-14 18:57:08 +00:00
Alexander Smorkalov
189e1b228d Fix missing FFmpeg include needed for av_get_pix_fmt_name 2022-12-14 13:09:37 +03:00
Alexander Smorkalov
52709c7771
Merge pull request #22954 from VadimLevin:dev/vlevin/fix-merge-artifacts-in-python-misc-tests
fix: remove function duplicates in test_misc.py
2022-12-14 09:42:43 +03:00
zihaomu
7dbb125a34 add nanotrack v2 at regression test. 2022-12-14 14:41:49 +08:00
Vadim Levin
3f5f09e730 fix: add _ suffix to properties having reserved keyword names 2022-12-13 20:56:39 +03:00
Vadim Levin
253a4c113e fix: remove function duplicates in test_misc.py 2022-12-13 19:14:52 +03:00
Alexander Smorkalov
1788c93aea
Merge pull request #22924 from alalek:logger_strip_base_dir
core(logger): strip opencv's modules base path
2022-12-13 15:28:10 +03:00
Alexander Alekhin
4203c903f8 Merge pull request #22928 from alalek:riscv_toolchains 2022-12-13 06:32:16 +00:00
Vadim Levin
727feda935 fix: AVFoundation inconsistent camera indices 2022-12-12 17:15:46 +03:00
Alexander Alekhin
39087fecdc
Merge pull request #22942 from alalek:videoio_test_update_hw_checks
* videoio(test): update PSNR check for H264/265

* videoio(test): reduce size for ffmpeg tests on 32-bit platforms
2022-12-12 12:38:14 +00:00
Rostislav Vasilikhin
d49958141e
Merge pull request #22925 from savuor:pytsdf_from_scratch
Fixes #22799

Replaces #21559 which was taken as a base

Connected PR in contrib: [#3388@contrib](https://github.com/opencv/opencv_contrib/pull/3388)

### Changes
OK, now this is more Odometry-related PR than Volume-related. Anyway,
* `Volume` class gets wrapped
* The same was done for helper classes like `VolumeSettings`, `OdometryFrame` and `OdometrySettings`
* `OdometryFrame` constructor signature changed to more convenient where depth goes on 1st place, RGB image on 2nd.
This works better for depth-only `Odometry` algorithms.
* `OdometryFrame` is checked for amount of pyramid layers inside `Odometry::compute()`
* `Odometry` was fully wrapped + more docs added
* Added Python tests for `Odometry`, `OdometryFrame` and `Volume`
* Added Python sample for `Volume`
* Minor fixes including better var names

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2022-12-12 09:40:12 +03:00