Further optimize DNN for RISC-V Vector.
* Optimize DNN on RVV by using vsetvl.
* Rename vl.
* Update fastConv by using setvl instead of mask.
* Fix fastDepthwiseConv
Update RVV backend for using Clang.
* Update cmake file of clang.
* Modify the RVV optimization on DNN to adapt to clang.
* Modify intrin_rvv: Disable some existing types.
* Modify intrin_rvv: Reinterpret instead of load&cast.
* Modify intrin_rvv: Update load&store without cast.
* Modify intrin_rvv: Rename vfredsum to fredosum.
* Modify intrin_rvv: Rewrite Check all/any by using vpopc.
* Modify intrin_rvv: Use reinterpret instead of c-style casting.
* Remove all macros which is not used in v_reinterpret
* Rename vpopc to vcpop according to spec.
* dnn: LSTM optimisation
This uses the AVX-optimised fastGEMM1T for matrix multiplications where available, instead of the standard cv::gemm.
fastGEMM1T is already used by the fully-connected layer. This commit involves two minor modifications:
- Use unaligned access. I don't believe this involves any performance hit in on modern CPUs (Nehalem and Bulldozer onwards) in the case where the address is actually aligned.
- Allow for weight matrices where the number of columns is not a multiple of 8.
I have not enabled AVX-512 as I don't have an AVX-512 CPU to test on.
* Fix warning about initialisation order
* Remove C++11 syntax
* Fix build when AVX(2) is not available
In this case the CV_TRY_X macros are defined to 0, rather than being undefined.
* Minor changes as requested:
- Don't check hardware support for AVX(2) when dispatch is disabled for these
- Add braces
* Fix out-of-bounds access in fully connected layer
The old tail handling in fastGEMM1T implicitly rounded vecsize up to the next multiple of 8, and the fully connected layer implements padding up to the next multiple of 8 to cope with this. The new tail handling does not round the vecsize upwards like this but it does require that the vecsize is at least 8. To adapt to the new tail handling, the fully connected layer now rounds vecsize itself at the same time as adding the padding(which makes more sense anyway).
This also means that the fully connected layer always passes a vecsize of at least 8 to fastGEMM1T, which fixes the out-of-bounds access problems.
* Improve tail mask handling
- Use static array for generating tail masks (as requested)
- Apply tail mask to the weights as well as the input vectors to prevent spurious propagation of NaNs/Infs
* Revert whitespace change
* Improve readability of conditions for using AVX
* dnn(lstm): minor coding style changes, replaced left aligned load
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN
* Add WebNN backend for OpenCV DNN Module
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Add WebNN head files into OpenCV 3rd partiy files
Create webnn.hpp
update cmake
Complete README and add OpenCVDetectWebNN.cmake file
add webnn.cpp
Modify webnn.cpp
Can successfully compile the codes for creating a MLContext
Update webnn.cpp
Update README.md
Update README.md
Update README.md
Update README.md
Update cmake files and
update README.md
Update OpenCVDetectWebNN.cmake and README.md
Update OpenCVDetectWebNN.cmake
Fix OpenCVDetectWebNN.cmake and update README.md
Add source webnn_cpp.cpp and libary libwebnn_proc.so
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
update dnn.cpp
update op_webnn
update op_webnn
Update op_webnn.hpp
update op_webnn.cpp & hpp
Update op_webnn.hpp
Update op_webnn
update the skeleton
Update op_webnn.cpp
Update op_webnn
Update op_webnn.cpp
Update op_webnn.cpp
Update op_webnn.hpp
update op_webnn
update op_webnn
Solved the problems of released variables.
Fixed the bugs in op_webnn.cpp
Implement op_webnn
Implement Relu by WebNN API
Update dnn.cpp for better test
Update elementwise_layers.cpp
Implement ReLU6
Update elementwise_layers.cpp
Implement SoftMax using WebNN API
Implement Reshape by WebNN API
Implement PermuteLayer by WebNN API
Implement PoolingLayer using WebNN API
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Implement poolingLayer by WebNN API and add more detailed logs
Update dnn.cpp
Update dnn.cpp
Remove redundant codes and add more logs for poolingLayer
Add more logs in the pooling layer implementation
Fix the indent issue and resolve the compiling issue
Fix the build problems
Fix the build issue
FIx the build issue
Update dnn.cpp
Update dnn.cpp
* Fix the build issue
* Implement BatchNorm Layer by WebNN API
* Update convolution_layer.cpp
This is a temporary file for Conv2d layer implementation
* Integrate some general functions into op_webnn.cpp&hpp
* Update const_layer.cpp
* Update convolution_layer.cpp
Still have some bugs that should be fixed.
* Update conv2d layer and fc layer
still have some problems to be fixed.
* update constLayer, conv layer, fc layer
There are still some bugs to be fixed.
* Fix the build issue
* Update concat_layer.cpp
Still have some bugs to be fixed.
* Update conv2d layer, fully connected layer and const layer
* Update convolution_layer.cpp
* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)
* Delete bib19450.aux
* Add WebNN backend for OpenCV DNN Module
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Add WebNN head files into OpenCV 3rd partiy files
Create webnn.hpp
update cmake
Complete README and add OpenCVDetectWebNN.cmake file
add webnn.cpp
Modify webnn.cpp
Can successfully compile the codes for creating a MLContext
Update webnn.cpp
Update README.md
Update README.md
Update README.md
Update README.md
Update cmake files and
update README.md
Update OpenCVDetectWebNN.cmake and README.md
Update OpenCVDetectWebNN.cmake
Fix OpenCVDetectWebNN.cmake and update README.md
Add source webnn_cpp.cpp and libary libwebnn_proc.so
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
update dnn.cpp
update op_webnn
update op_webnn
Update op_webnn.hpp
update op_webnn.cpp & hpp
Update op_webnn.hpp
Update op_webnn
update the skeleton
Update op_webnn.cpp
Update op_webnn
Update op_webnn.cpp
Update op_webnn.cpp
Update op_webnn.hpp
update op_webnn
update op_webnn
Solved the problems of released variables.
Fixed the bugs in op_webnn.cpp
Implement op_webnn
Implement Relu by WebNN API
Update dnn.cpp for better test
Update elementwise_layers.cpp
Implement ReLU6
Update elementwise_layers.cpp
Implement SoftMax using WebNN API
Implement Reshape by WebNN API
Implement PermuteLayer by WebNN API
Implement PoolingLayer using WebNN API
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Implement poolingLayer by WebNN API and add more detailed logs
Update dnn.cpp
Update dnn.cpp
Remove redundant codes and add more logs for poolingLayer
Add more logs in the pooling layer implementation
Fix the indent issue and resolve the compiling issue
Fix the build problems
Fix the build issue
FIx the build issue
Update dnn.cpp
Update dnn.cpp
* Fix the build issue
* Implement BatchNorm Layer by WebNN API
* Update convolution_layer.cpp
This is a temporary file for Conv2d layer implementation
* Integrate some general functions into op_webnn.cpp&hpp
* Update const_layer.cpp
* Update convolution_layer.cpp
Still have some bugs that should be fixed.
* Update conv2d layer and fc layer
still have some problems to be fixed.
* update constLayer, conv layer, fc layer
There are still some bugs to be fixed.
* Update conv2d layer, fully connected layer and const layer
* Update convolution_layer.cpp
* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)
* Update dnn.cpp
* Fix Error in dnn.cpp
* Resolve duplication in conditions in convolution_layer.cpp
* Fixed the issues in the comments
* Fix building issue
* Update tutorial
* Fixed comments
* Address the comments
* Update CMakeLists.txt
* Offer more accurate perf test on native
* Add better perf tests for both native and web
* Modify per tests for better results
* Use more latest version of Electron
* Support latest WebNN Clamp op
* Add definition of HAVE_WEBNN macro
* Support group convolution
* Implement Scale_layer using WebNN
* Add Softmax option for native classification example
* Fix comments
* Fix comments
* dnn(ocl4dnn): fix LRN layer accuracy problems
- FP16 intermediate computation is not accurate and may provide NaN values
* dnn(test): update tolerance for FP16
fix bug: wrong output dimension when "keep_dims" is false in pooling layer.
* fix bug in max layer
* code align
* delete permute layer and add test case
* add name assert
* check other cases
* remove c++11 features
* style:add "const" remove assert
* style:sanitize file names
* dnn: fix unaligned memory access crash on armv7
The getTensorContent function would return a Mat pointing to some
member of a Protobuf-encoded message. Protobuf does not make any
alignment guarantees, which results in a crash on armv7 when loading
models while bit 2 is set in /proc/cpu/alignment (or the relevant
kernel feature for alignment compatibility is disabled). Any read
attempt from the previously unaligned data member would send SIGBUS.
As workaround, this commit makes an aligned copy via existing clone
functionality in getTensorContent. The unsafe copy=false option is
removed. Unfortunately, a rather crude hack in PReLUSubgraph in fact
writes(!) to the Protobuf message. We limit ourselves to fixing the
alignment issues in this commit, and add getTensorContentRefUnaligned
to cover the write case with a safe memcpy. A FIXME marks the issue.
* dnn: reduce amount of .clone() calls
* dnn: update FIXME comment
Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
Make the implementation of optimization in DNN adjustable to different vector sizes with RVV intrinsics.
* Update fastGEMM for multi VLEN.
* Update fastGEMM1T for multi VLEN.
* Update fastDepthwiseConv for multi VLEN.
* Update fastConv for multi VLEN.
* Replace malloc with cv::AutoBuffer.
dnn : int8 quantized layers support in onnx importer
* added quantized layers support in onnx importer
* added more cases in eltwise node, some more checks
* added tests for quantized nodes
* relax thresholds for failed tests, address review comments
* refactoring based on review comments
* added support for unsupported cases and pre-quantized resnet50 test
* relax thresholds due to int8 resize layer
Add ExpandDims layer of tf_importer.cpp
* Add ExpandDims to tf_importer.
* add -1 expand test case.
* Support different dimensions of input.
* Compatible with 5-dimensional NDHWC data
* Code align
* support 3-dim input.
* 3-dim bug fixed.
* fixing error of code format.
Add support for YOLOv4x-mish
* backport to 3.4 for supporting yolov4x-mish
* add YOLOv4x-mish test
* address review comments
Co-authored-by: Guo Xu <guoxu@1school.com.cn>
Add Normalize subgraph, fix Slice, Mul and Expand
* Add Normalize subgraph, support for starts<0 and axis<0 in Slice, Mul broadcasting in the middle and fix Expand's unsqueeze
* remove todos
* remove range-based for loop
* address review comments
* change >> to > > in template
* fix indexation
* fix expand that does nothing
* support PPSeg model for dnn module
* fixed README for CI
* add test case
* fixed bug
* deal with comments
* rm dnn_model_runner
* update test case
* fixed bug for testcase
* update testcase
Optimization of DNN using native RISC-V vector intrinsics.
* Use RVV to optimize fastGEMM (FP32) in DNN.
* Use RVV to optimize fastGEMM1T in DNN.
* Use RVV to optimize fastConv in DNN.
* Use RVV to optimize fastDepthwiseConv in DNN.
* Vectorize tails using vl.
* Use "vl" instead of scalar to handle small block in fastConv.
* Fix memory access out of bound in "fastGEMM1T".
* Remove setvl.
* Remove useless initialization.
* Use loop unrolling to handle tail part instead of switch.
Add Python's test for LSTM layer
* Add Python's test for LSTM layer
* Set different test threshold for FP16 target
* rename test to test_input_3d
Co-authored-by: Julie Bareeva <julia.bareeva@xperience.ai>
Support non-zero hidden state for LSTM
* fully support non-zero hidden state for LSTM
* check dims of hidden state for LSTM
* fix failed test Test_Model.TextRecognition
* add new tests for LSTM w/ non-zero hidden params
Co-authored-by: Julie Bareeva <julia.bareeva@xperience.ai>
ONNX diagnostic tool
* Final
* Add forgotten Normalize layer to the set of supported types
* ONNX diagnostic tool corrections
* Fixed CI test warnings
* Added code minor corrections
Co-authored-by: Sergey Slashchinin <sergei.slashchinin@xperience.ai>
* Aligned OpenCV DNN and TF sum op behaviour
Support Mat (shape: [1, m, k, n] ) + Vec (shape: [1, 1, 1, n]) operation
by vec to mat expansion
* Added code corrections: backend, minor refactoring
Added OpenVINO ARM target
* Added IE ARM target
* Added OpenVINO ARM target
* Delete ARM target
* Detect ARM platform
* Changed device name in ArmPlugin
* Change ARM detection
Conv1D and Pool1D for CUDA backend
* CUDA-independent changes
* Add Conv1D and Pool1D for CUDA backend
* CUDA-independent changes
* Fix typo
* fix comment
* Update fix
* make changes more correct for pooling layer
* Minor fixes for review
* Split skip blocks
[GSoC] High Level API and Samples for Scene Text Detection and Recognition
* APIs and samples for scene text detection and recognition
* update APIs and tutorial for Text Detection and Recognition
* API updates:
(1) put decodeType into struct Voc
(2) optimize the post-processing of DB
* sample update:
(1) add transformation into scene_text_spotting.cpp
(2) modify text_detection.cpp with API update
* update tutorial
* simplify text recognition API
update tutorial
* update impl usage in recognize() and detect()
* dnn: refactoring public API of TextRecognitionModel/TextDetectionModel
* update provided models
update opencv.bib
* dnn: adjust text rectangle angle
* remove points ordering operation in model.cpp
* update gts of DB test in test_model.cpp
* dnn: ensure to keep text rectangle angle
- avoid 90/180 degree turns
* dnn(text): use quadrangle result in TextDetectionModel API
* dnn: update Text Detection API
(1) keep points' order consistent with (bl, tl, tr, br) in unclip
(2) update contourScore with boundingRect
Add option for NMS for boxes with different labels
* DetectionModel impl
* Add option for NMS for boxes with different labels
In the detect function in modules/dnn/include/opencv2/dnn/dnn.hpp, whose implementation can be found at modules/dnn/src/model.cpp, the Non Max Suppression (NMS) is applied only for objects of the same label. Thus, a flag
was added with the purpose to allow developers to choose if they want to keep the default implementation or wether they would like NMS to be applied to all the boxes, regardless of label.
The flag is called nmsDifferentLabels, and is given a default value of false, which applies the current default implementation, thus allowing existing projects to update opencv without disruption
Solves issue opencv#18832
* Change return type of set & Add default constr
* Add assertions due to default constructor
Support for Pool1d layer for OpenCV and OpenCL targets
* Initial version of Pool1d support
* Fix variable naming
* Fix 1d pooling for OpenCL
* Change support logic, remove unnecessary variable, split the tests
* Remove other depricated variables
* Fix warning. Check tests
* Change support check logic
* Change support check logic, 2
Fixing dnn Resize layer for variable input size
* Fix onnx loading of resize/upsample layers for different opset
* group all DynamicResize tests
* cleaned up scales checks
* Simplify branching
Fix loading issue for Faster RCNN model from #16783
* Add a reproducer with multi-output Gather
* Fix an issue with ONNX graph simplifier
* fix build
* Move checks to correct class
* Minor changes for better code appearence
Add support for Conv1D on OpenCV backend
* Add support for Conv1D on OpenCV backend
* disable tests on other targets/backends
* Fix formatting
* Restore comment
* Remove unnecessary flag and fix test logic
* Fix perf test
* fix braces
* Fix indentation, assert check and remove unnecessary condition
* Remove unnecessary changes
* Add test cases for variable weights and bias
* dnn(conv): fallback on OpenCV+CPU instead of failures
* coding style
The change is needed due to removing default opset namespace for Unsqueeze
in the scope of this refactoring activity: https://github.com/openvinotoolkit/openvino/pull/2767
Signed-off-by: Roman Kazantsev <roman.kazantsev@intel.com>
Fix loading of ONNX models with Resize operation with Opset 11 for newer versions of Pytorch
* Add reproducer for Resize operation from newer versions of Pytorch
* Fix loading of scales parameter for Resize layer
* Change check type for better diagnostic messages
* Fix ONNX loading in issues opencv#17516, opencv#17531
* Add tests for Linear and Matmul layers
* Disable tests for IE versions lower than 20.4
* Skip unstable tests with OpenCL FP16 on Intel GPU
* Add correct test filtering for OpenCL FP16 tests
revise default proto to match the filename in documentations
fix a bug
beautify python codes
fix bug
beautify codes
add test samples with larger/smaller size
remove unless code
using bytearray without creating tmp file
remove useless codes
* hopefully, eliminated compile warnings, errors, as well as failure in one test
* * fixed a few typos
* decreased buffer size in some cases
* added more optimal im2row branch in the case of 1x1 convolutions
* tuned fastConv to reduce the number of passes over arrays
backport of commit 77b01deb80
add relu option
add relu as activation option in darknet
simplify the setParams if-else ladder
add relu as activation option in darknet
correct activation_param type
format
format
add relu as activation option in darknet
spacing
spacing
add relu as activation option in darknet
DNN: OpenCL/slice update
* dnn(ocl/slice): make slice kernel VTune friendly
- more unique names
- inline code of copy functions
* dnn(ocl/slice): prefer to spawn more work groups
- even in case with 1D copy
- perf improvement up to 2x of kernel time (due to changed configuration 128x1x1 => 128x32x1)
* dnn(ocl/slice): cache kernel exec info
* added depth-wise convolution; gives ~20-30% performance improvement in MobileSSD networks
* hopefully, eliminated compile warnings, errors, as well as failure in one test
* * fixed a few typos
* decreased buffer size in some cases
* added more optimal im2row branch in the case of 1x1 convolutions
* tuned fastConv to reduce the number of passes over arrays
Fix cuda11
* use cudnn_version.h to detect version when it is available
* remove nppi from CUDA11
* use ocv_list_filterout
* dnn(cuda): temporary disable CUDNN 8.0
cuda4dnn: reduce CUDA version requirements to at least CUDA 9.2
* remove half2 specializations
* do not remove atomicAdd for half in CUDA 10 and below
* remove fp16.hpp
Objc binding
* Initial work on Objective-C wrapper
* Objective-C generator script; update manually generated wrappers
* Add Mat tests
* Core Tests
* Imgproc wrapper generation and tests
* Fixes for Imgcodecs wrapper
* Miscellaneous fixes. Swift build support
* Objective-C wrapper build/install
* Add Swift wrappers for videoio/objdetect/feature2d
* Framework build;iOS support
* Fix toArray functions;Use enum types whenever possible
* Use enum types where possible;prepare test build
* Update test
* Add test runner scripts for iOS and macOS
* Add test scripts and samples
* Build fixes
* Fix build (cmake 3.17.x compatibility)
* Fix warnings
* Fix enum name conflicting handling
* Add support for document generation with Jazzy
* Swift/Native fast accessor functions
* Add Objective-C wrapper for calib3d, dnn, ml, photo and video modules
* Remove IntOut/FloatOut/DoubleOut classes
* Fix iOS default test platform value
* Fix samples
* Revert default framework name to opencv2
* Add converter util functions
* Fix failing test
* Fix whitespace
* Add handling for deprecated methods;fix warnings;define __OPENCV_BUILD
* Suppress cmake warnings
* Reduce severity of "jazzy not found" log message
* Fix incorrect #include of compatibility header in ios.h
* Use explicit returns in subscript/get implementation
* Reduce minimum required cmake version to 3.15 for Objective-C/Swift binding